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Abstract: The purpose of this paper is the experimental investigation of large scale structures in the shear flow in compound channels. 

Compound channels are found in the nuclear and process industry, in channels like rod bundles, heat exchangers and coolers of modern 

electronic devices. The geometrical characteristics of the channels generate velocity profiles with very high vorticity values, which give origin to 

large scale structures, responsible for convective heat transfer enhancement, mixing and to the possibility of inducing vibration of the structures. 

By means of hot wire anemometry the flow in a test section is investigated. This consisting of two parallel plates placed on a wall of a wind 

channel, forming a slot with width “d” and depth “p”. The working fluid is air. Ten different p/d configurations were studied. Results allow the 

determination of the flow characteristics of the shear layer formed in the interior of the slot as well as most representative scales for the 

definition of the Strouhal number. 
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1 Introduction 

Compound channels are characterized by the presence of a narrow region connecting two main channels, like in rod bundles 

of nuclear reactors, where two adjacent subchannels are connected by the narrow gap between the rods, Möller, 1991. The flow 

in the gap region has pulsating characteristics responsible for mass and momentum exchange between the subchannels, due to the 

presence of large-scale structures, which are transported by the main flow. These structures are responsible for increasing the 

Reynolds stresses in the boundary region between the gap (or slot) and the main channel. The work of Meyer and Rehme, 1995, 

and the work of Soldini et al., 2004, show that this kind of phenomenon of flow pulsations appears not only in rod bundles of 

nuclear reactors, but also in heat exchangers (tube banks), coolers of electronic devices and irrigation channels. 

Flow pulsations in rod bundles were first reported by Rowe et al., 1974 where the axial component of the velocity fluctuation 

presented periodical characteristics. The frequency associated to this phenomenon increased when the distance between the rods 

was reduced. In the work of Möller, 1991, hot wire anemometry was employed to determine the origin and characteristics of this 

phenomenon. The results demonstrated that the flow pulsations were associated to the strong vorticity field near the gaps and that 

the dimensionless frequency in form of a Strouhal number was a function of the geometry of the channel. The Strouhal number 

was defined with the rod diameter and the friction velocity in the narrow gap between the rods. 

Although a significant number of experimental works about the flow in rod bundles have being published since then, the 

conclusions about the definition of a Strouhal number and correlations able to describe precisely the frequency of the pulsation 

are not unanimous, these being based on geometrical and flow parameters. Wu and Trupp, 1994, performed hot wire 

measurements in a trapezoidal channel containing a single tube. The results showed pronounced peaks in spectra, confirming the 

strong dependence of the frequency on geometrical parameters and the flow velocity, but the values of the Strouhal number 

obtained did not agree with the correlations proposed by Möller, 1991, leading the Authors to suggest a new correlation for the 

determination of the Strouhal number. 

Meyer and Rehme, 1995, using hot wire anemometry studied the flow characteristics in a channel with two or several 

parallel plates attached to a wall in geometry similar to an internally finned channel, so that one or more narrow channels were 

connected to a wider one, and in a test section formed by two rectangular channels connected by a slot. The parallel plates 

geometry had values of the geometrical parameter d/g=1.66 to d/g=10.0, being d the depth of the slot formed by the plates and g 

the distance between two plates. Authors observed the presence of large scale structures producing flow pulsations for d/g≥ 2 

confirmed by flow visualizations experiments for Reynolds numbers as low as Re=150. A correlation for the Strouhal number is 

proposed based on the velocity measured in the edge of the plates, and the square root of the product of “d” and “g”, but the 

results showed errors for d/g values greater than 7. 

Guellouz and Tavoularis, 2000, used hot wires and flow visualizations to investigate flow pulsations in a rectangular channel 

containing a single tube. The results showed the predominance of these structures in the region near the gap between tube and 

channel wall even for relatively large values of the gap spacing, confirming results by Meyer and Rehme, 1995, who showed that 

the transport velocity of the vortices and the spacement between them is a function of the gap size. 

The purpose of this work is, therefore, to investigate the presence of flow pulsations in compound channels formed by two 

parallel plates attached to a wall in a fin-like geometry and their formation conditions, as well as to obtain velocity and length 

scales for the definition of a Strouhal number. 



 

2 Test Section and Experimental Technique 

The test section consists on a 3320 mm long channel and 146 mm height and a variable width, w. Three different values 

were adopted, namely 60, 120 and 150 mm. Working fluid was air at room temperature, driven by a centrifugal blower controlled 

by a frequency inverter, reaching the test section after passing through a diffuser and a set of honeycombs and screens with about 

1% turbulence intensity. After the screens a Pitot tube placed on a fixed position was used to measure the reference velocity Uref 

of the experiments, which had a constant value of Uref=13.50 m/s (± 0.1 m/s) for all experiments. 

Inside the channel two metal plates with thickness e = 1.2 mm and length “L” were mounted onto a side wall to form a 

canyon like slot with depth “p” and width “d”. Table 1 shows the dimensions of the test sections and the Reynolds numbers of 

each test section. Reynolds numbers were defined with the reference velocity, Uref, and the hydraulic diameter channels, Dh. 
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Figure 1 – Schematic view of the test section (a) and cross sectional (b) view with plates and geometrical parameters. 

Table 1 – Test section configurations and Reynolds number – (Dimensions in mm). 

Test 

section # 

w p d L p/d w/p 

ref hU D
Re

×
=

ν
 

01 150 50 10 1250 5 3 14.90 × 10³ 

02 120 40 8 1000 5 3 11.01 × 10³ 

03 60 20 4 500 5 3  7.40 × 10³ 

04 150 50 10 500 5 3 13.01 × 10³ 

05 120 40 8 500 5 3 13.51 × 10³ 

06 60 20 4 250 5 3  7.30 × 10³ 

07 150 50 4 1250 12.5 3 16.50 × 10³ 

08 120 40 4 1000 10 3 13.60 × 10³ 

09 150 50 4 500 12.5 3 13.00 × 10³ 

10 120 40 4 500 10 3 12.60 × 10³ 

 

Measurements of velocity and velocity fluctuations were performed by a hot wire DANTEC StreamLine system using a 

double wire probe with a slant wire (45
o
) and a wire perpendicular to the main flow to perform simultaneous measurements of the 

transversal  (w – parallel to the  symmetry  line, Fig. 1-b)  and  axial  components (u) of the velocity  vector.  Collis and Williams, 

1959, method with modifications by Olinto and Möller, 2004 was applied for the evaluation of the anemometer signals. Velocity 

field was previously measured by a Pitot tube. Measurements were performed 20 mm before channel outlet. 

Data acquisition was performed by means of a 12 bit Keithley DAS58 A/D converter board, with a sampling frequency of 3 

KHz and a low pass filter set at 1 KHz. Length of time series was 43.69 s. 



 

3 Results and discussion 

3.1 Velocity profile 

Figure 2 presents the velocity distribution along the symmetry line of test section #. 2 (Table 1). There, the width of the 

parallel plates, or depth of the slot, is indicated by the value of p. The velocity profile can be divided in three different zones: 

while in zones 1 and 3 velocity distribution is strongly influenced by the walls on the extremities of symmetry line, zone 2 has the 

characteristics of a mixing layer beginning in the region between the plates and extending towards the main flow. The mixing 

layer formation in compound channels was related by Shiono and Knight, 1991, when the authors performed measurements in an 

open channel with flooding plains.  
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Figure 2 – Axial velocity profile on the symmetry line, section # 2. 

Figure 3 presents the mean axial velocity distribution along the symmetry line for test sections # 01 to 06 (Table 1). In 

general the same features of Fig. 2 can be observed for all cases studied. Can be observed, through the velocity profiles, a mixing 

layer formation that are clearly defined, mainly for test section from 01 to 03, where there are two different velocity layers, with a 

maximum velocity U2 and minimum velocity U1. Nevertheless, in Figure 3 (b) the mixing layer features are not so clear, and the 

velocity profiles show a still developing flow.   
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Figure 3 – Axial velocity distribution along the symmetry line: a) test sections 1, 2 and 3; b) test sections 04, 05 and 06. 

For better comprehension of the phenomenon, velocity values were normalized by the maximal velocity in the shear layer, 

while the z-coordinate was normalized by the depth of the narrow part of the channel, p. 

How all the velocity profiles show only one maximum velocity point, it is easy to determine the maximum mixing layer 

velocity, U2, in spite of this fact, only by observing Fig. 3, the value of the minimum velocity, U1, cannot be inferred. Therefore, 

the velocity gradient will be used to determine the position of the end wall influence and the beginning of the shear layer. The 

minimum velocity, U1, is defined as the velocity value where the velocity gradient changes its concavity, so at this position, 
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∂
=

∂
                                                                                                                                                           (1) 

where the first derivative, is calculated by forward differences.  



 

In Fig. 4, dimensionless velocity and velocity gradients are plotted as a function of the dimensionless coordinate z/p. In all 

test sections investigated, an inflexion point near the edge of the narrow part of the channel is found the vertical lines show the 

upper and lower velocities location, U2 and U1, in the mixing layer. 
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Figure 4 – Gradients and velocity profiles: a) test section #10. b) test section #9. 

3.2 Velocity distribution in shear layers 

Since, there is a mixing layer and this one extends from somewhere between the plates to a certain position into main 

channel, it is possible to figure out this problem as a steady state planar turbulent mixing layer in spatial development, where the 

momentum equation is written as 

2

t 2

u u u
u w

x x z

∂ ∂ ∂
+ = ν

∂ ∂ ∂
                                                                                                                                                (2) 

where u, w, are axial and transversal velocity components respectively and νt, is an eddy-viscosity. 

So, the self-similar solutions can be found as 

( )(z) cu U Uf= + ∆ η                                                                                                                                                    (3) 

where: 

∆U = difference between the lower and the upper velocities in the mixing layer, U1 and U2, respectively;  

Uc = convection velocity, defined by  
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η = similarity parameter, defined according to Prooijen and Uijttewaal, 2002, by 
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where 

zc = coordinate of the center of the mixing layer; 

δ(x) = thickness of the mixing layer, defined as 

max.
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According to Lesieur, 1997, the self-similar solution for the eq. (3), leads to an error function for the mixing layer velocity 

profile, however, a hyperbolic tangent function (tanh) is widely used, thus 

U 2
u( ) tanh( )

2

∆  
η = + η λ 

                                                                                                                                          (7) 

The velocity ratio, λ, is defined as a difference velocity, ∆U and convection velocity Uc, ratio, given by 
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The velocity ratio, λ, is also called as rate of shear as showed by Yang et al., 2004, and depicts the relationship between the 

main characteristic of a mixing layer, its velocity difference, and the velocity of the center mixing layer. It can imagine, at the 

beginning, before reaching test sections, the velocity profile is fitted as logarithmic function, then when the flow enter into the test 

section the velocity profile changes and the velocity difference start being established increasing along streamwise. Therefore, 

only by using the velocity difference is not possible to realize the influence of this feature in the velocity profile being required 

another velocity scale in order to make a dimensionless number in form of velocity ratio, λ. 

Figure 5 shows the velocity profiles of test sections #3 and #7. Experimental data were plotted as a function of the similarity 

parameter η, Eq. (5). The use Eq. (7) with the hyperbolic tangent function for the velocity profile (Lesieur, 1997) presents a good 

agreement with the experimental data in all test sections investigated. However, for the test sections where the velocity difference 

inside the shear layer is small, there are very few experimental data points of the velocity profiles, as, for example, test section #6, 

where the determination of the lower velocity U1 was very difficult. 
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Figure 5 – Mean axial velocity distribution in to the mixing layer and its approximation by hyperbolic tangent function. a) section 

#3. b) section #7. 

3.3 The shear layer thickness 

Self-similarity is a state of local equilibrium where the flow quantities are only dependent upon local variables, including 

mean velocities and its fluctuations, as well as local length scales, such as width shear layer, δ, and momentum thickness, θ. Once 

self-similarity was achieved these local lengths depend on streamwise position, which were obtained. In theory is expected a 

linear mixing layer growing with the streamwise coordinate in the self-similar state. Indeed, Figure 6, shows the relationship 

between mixing layer thickness,δ, and the section test length, as observed, through the curves, A and B, mixing layer width 

increases as a linear function of the test sections length, implying the self-similar state has been accomplished. However, must be 

observed important differences about the growing mixing layer rates.  
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Figure 6 – Growth of mixing layer with the increasing section test length. 



 

The upper curve, A, shows a bigger growth rate than curve B, dδ/dL = 0.023 and 0.0165, respectively. In this case, the 

difference between the two growth rates is about 40%. This fact was reported on Bell and Mehta, 1990, and Yang et al., 2004. 

According to authors the faster mixing layer width increase, can be explained by the streamwise vortex development. In fact, the 

points on curve (A), which represent test sections (Table 1), showed periodical velocity fluctuation patterns, suggesting the 

coherent structures presence. Therefore, the presence of coherent structures in the flow will be discussed later. 

3.4 Reynolds stresses distribution 

The profiles for the Reynolds normal stresses ( 2u ' , 2w ' ) and the shear stress, u 'w ' , are presented in Figs. 6-9. The values 

are made dimensionless by the velocity difference (U2 – U1), and plotted in similarity coordinates. The results showed here, are 

rather similar which ones stressed on Townsend, 1976, in classical mixing layer problems. 

The Reynolds normal stresses and the shear stress distributions showed the same behavior for all cases, reaching the 

maximum value at the center of mixing layer, η = 0, and after a quick decrease towards the main channel.  These features agree 

with the results obtained by Aubrum et al., 2002 and Yang, et al., 2004.  
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Figure 6 – Profiles of  Reynolds normal stresses and shear stress, section test # 3. 
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Figure 7 - Profiles of  Reynolds normal stresses and shear stress, section 40x4x1000. 

As regards to the peak Reynolds stresses and shear stress, they agree with the data obtained by Yang et al., 2004, in spit of to 

present difference for the test sections # 04, 05 and 06, Figs. 8 -9. In these sections, the maximum shear stress, are higher than for 

others test sections.   
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Figure 8 - Profiles of  Reynolds normal stresses and shear stress, section 20x4x250. 
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Figure 9 - Profiles of  Reynolds normal stresses and shear stress, section 50x10x500. 

3.5 The coherent structures in the flow 

Another noteworthy feature in developing mixing layers concerns the streamwise vortex formation, according Bonnet and 

Delville, 2001, the coherent structures, in these kind of the flows, has been well known for at least the last two decades. The 

identification and their characterization have been done for several purposes. First, from the energetic view point. Secondy, 

because the dynamical properties, coherent structures play an essential role in mixing processes, drag, noise emission, heat 

transfer, and others diffuses process.  

Figures 9 to 10 show the autospectral densities function for the both velocity components. The position, where the series 

were carry out, and the frequencies are done dimensionless by means similarity coordinate “η” and the Strouhal number, 

respectively. 

The Strouhal number is defined by eq. (9), such as showed by Bonnet et al., 1998, the axial and transversal velocity 

components were noticeable are by φu and  φw, respectively, tha do not make dimensionless. 

(x)

c

f δ
Str

U

×
=                                                                                                                                                                                 (9) 

Where “f” is the fundamental frequency in the autospectral density function. 

For all autospectral densities function, the bandwidth is the same, Be = 2.92 Hz, and the error in the Strouhal number is from 

3 to 7%. 

Figure 9 (a), (b) e (c), shows the autospectral densities functions for both velocity fluctuation components carried out at the 

mixing layer center, for the test sections # 03, 07 and 08. These test sections presents the highest velocity ratio, for their cases, λ = 

1.29, λ = 1.36 and λ = 1.26, respectively. The autospectral densities show only one important peak and placed in the same 

Strouhal number, 0.17 along the symmetry line in the mixing layer. However, as such observed by Meyer and Rehme, 1994 and 



 

Meyer e Rehme, 1995, the periodic characteristics of the velocities series, seems vanish, for the measurements carry out further 

edge plates. 
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Figure 9 – Autospectral densities function for the both velocity components. a) test section # 03. b) test section # 07. c) test 

section # 08 

On the other hand, the test sections that present a velocity ratio lower than one, λ < 1, the velocity fluctuations series showed 

no periodic behavior. In some test sections, there are small peak, fig. 11(a), which appear only the transversal velocity component 

and are much lower than those measured in the test sections # 03, 07 and 08. These results lead to the conclusion that the peaks in 

spectra, that represent streamwise vortex, are produced by the fluid flow development, it means, might exist an especial 

relationship between the geometrical parameters, p, d and L, that can enable a faster development flow in test section, and thus, 

the large scale structures formation. 
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Figure 10 - Autospectral densities function for the both velocity components. a) test section  

Figure 11(a), shows the behavior of Strouhal number in both velocity components, and its relationship between non-

dimensional parameter δ(x)/d. The transversal Strouhal numbers distribution showed a constant behavior and well defined in Strw 

= 0.17, despite axial component, Stru, which seem to growth with the δ(x)/d ratio. Nevertheless, due the few results, about axial 

Strouhal number growing, a generic conclusion can not be formalized. 
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Figure 11 – Relationship between the Strouhal numbers and flow developing parameters. 

As regards to Figure 11 (a), it suggests that the presence of large scale structures in the flow no longer depend of the p/d ratio, 

such as showed by Meyer and Rehme, 1994, but a new dimensionless parameter, δ(x)/d. Since the presence of peaks in spectra 

were observed in the test sections n # 02 and 03 despite test sections from n # 01 to 06 have the same p/d ratio.  

The relationship between the velocity ratio, λ, δ(x)/d ratio and the coherent structures observation in the flow, are showed in 

the Figure 11 (b). It can be observed that were not found important peaks for δ(x)/d ratio below two, and a low δ(x)/d ratio, leads a 

low velocity ratio.   

4 Concluding remarks 

In this paper, an experimental study of mean and fluctuating velocities of the turbulent flow in compound channels formed 

by a narrow channel connected to a wider one is presented. The purpose was the investigation of flow the characteristics with a 

view of the presence of coherent structures with give rise to a phenomenon of quasi-periodic flow pulsations and the 

determination of the scales for the definition of the Strouhal number to describe the main frequency of this phenomenon. 

The results of the velocity measurements showed the presence of a shear layer where the distribution of mean and fluctuating 

quantities showed to be functions of the measurement position only, evidencing the self preserving characteristics of the flow. 

It was observed that the velocity ratio λ plays an important role in the dynamics of the flow, so that strong periodic 

characteristics, evidenced by peaks in frequency spectra, were present when the value of λ was greater than 1. This did not 

happen for values lower than one. No peaks were also observed in the regions outside the shear layer. Experimental results 

evidenced that the raise in the velocity ratio of the main flow is a consequence of increasing the value of the relation between the 

shear layer thickness, δ(x), and the distance between the plates, d.  



 

A Strouhal number, defined with the frequency of the transverse component of the velocity fluctuation, the convection 

velocity and the shear layer thickness, lead to satisfactory results, showing that these scales are representative of the flow 

characteristics. This Strouhal number, from all the spectra where peaks were present, had values about Str=0.17, lower than the 

value of 0.2 found by Bonnet et al., 1998, in their study of free shear layers. This definition for the Strouhal number appears to be 

very consistent and the value of Str =0.17 appears even in deep test section configurations as n #. 09 and 10, where p/d-values 

were 10 and 12.5, respectively. 

As regards a possible growth of the Strouhal number values, inferred by the frequency peak in the axial component, the 

small number of experimental data does not allow any conclusion, being, therefore, necessary new experiments to describe its 

behavior. 
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