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Abstract. Rotating machines are commonly analyzed by mathematical models based on finite shaft elements. This pro-
cedure is straightforward and enables the engineer to calculate critical speeds, mode shapes, and frequency response
functions of the system by setting the geometric properties of the shaft. On the other hand, the inverse problem of find-
ing the geometry of the shaft as a function of desired parameters, such as critical speeds and eigenfrequencies, is not
as thoroughly investigated as the direct problem. In this work, one presents a procedure for finding the shaft geome-
try as a function of desired eigenfrequencies of the system, based on sensitivity functions and matrix properties of the
finite shaft element. By setting the desired eigenvalues of the rotating system, the objective functions are minimized by
a Newton-Raphson algorithm, whose Jacobian matrix is composed of the eigenvalue sensitivity functions. The chosen
design variables are the radii of shaft elements. The eigenvalue sensitivity functions are obtained by taking advantage
of the fact that finite element matrices are functions of the shaft radius. As a result, one achieves a practical, low time
consuming, procedure for checking and adjusting the shaft geometry as a function of the desired eigenfrequencies and
critical speeds of rotating machines, in early stages of design.
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1. INTRODUCTION

Rotating machines are designed for specific operational conditions and, the dynamic characteristics of such machines
must fulfill the requirements defined by these operational conditions. This means that, the engineer must have knowledge
of critical speeds, frequency response functions and overall vibration levels that the machine in design will present under
operation. This information must not conflict with the previously defined design requirements.

Several parameters have influence on the final dynamic characteristics of rotating machines. Among these parameters,
one can list the bearing equivalent damping and stiffness and, the rotor geometry. By defining these parameters in the
design process, the engineer basically sets the final dynamic characteristics of the rotating machine. Hence, it is important
to the engineer to gain some insight into the sensitivity of the system dynamics to these parameters, in order to choose
the appropriated values for each one. This kind of information can help the engineer to identify critical parameters and
choose the optimum, or near optimum, design solution, resulting in a machine that presents dynamic characteristics that
fulfill the design requirements. The optimum design solution can be obtained by many different ways and, in many cases,
it is not a trivial task.

The sensitivity analysis of rotating machines can be based on empirical experience or on correlated mathematical
models. The first case is viable when there is much information on a machine that already exists, and the machine is being
redesigned with minor changes. If this is not the case, the engineer must rely on the second alternative: models. Many
works can be found in literature related to sensitivity analyses on rotating machines based on rotor dynamic models. In
most of the cases, the design parameters in study are the bearing characteristics. For instance, Huang and Lin (2002)
present a sensitivity analysis of the critical speeds of a rotor modeled by finite elements. By minimizing a functional, the
authors find the optimum values of support stiffness that locate the critical speeds of the system in desired frequencies.
Fang and Wang (2003) optimize the parameters of hydrodynamic bearings to minimize rotor support forces and, conse-
quently, response functions. The sensitivity analysis also helped finding the appropriated positions to locate the bearings.
Silveira and Lucchesi (2004) adopted a Design of Experiments Method to perform the sensitivity analysis of the system
to bearing parameters. In their work, the vibration levels of the rotor under first bending frequency were minimized,
numerically and experimentally.

One of the first works related to the sensitivity analysis of rotating systems to geometric properties is presented by
Lund (1980). In his work, the author estimates the percentage of change in final critical speeds by the percentage of
change in the geometric properties of the rotor, through a state vector transfer matrix. By this methodology, the critical
elements in the rotor can be identified and properly changed to desired results. In the same direction, Rajan et al. (1986)
perform sensitivity analyses on a rotor modeled by finite elements, where the design parameters are the length and inertia
properties of the elements. The authors take advantage of properties of the element matrices that simplify the analysis,
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and whose results allow the identification of the critical elements to vibration levels and mode shapes. Acceptable results
were obtained by changing up to 20% the original values of the system.

In this work, one presents a procedure for finding the shaft geometry as a function of desired eigenfrequencies of the
system, based on sensitivity functions and matrix properties of the finite shaft element. By setting the desired eigenvalues
of the rotating system, the objective functions are minimized by a Newton-Raphson algorithm, whose Jacobian matrix
is composed of the eigenvalue sensitivity functions. The chosen design variables are the radii of shaft elements. The
eigenvalue sensitivity functions are obtained by taking advantage of the fact that finite element matrices are functions of
the shaft radius. As a result, one achieves a practical, low time consuming, procedure for checking and adjusting the
shaft geometry as a function of the desired eigenfrequencies and critical speeds of rotating machines, in early stages of
design. The procedure can also be used for model updating, setting the experimentally measured frequencies as desired
frequencies, and obtaining the updated shaft shape (radii) to be used in the model.

2. FINITE ELEMENT FORMULATION OF ROTATING SYSTEMS

Nelson and McVaugh (1976) proposed a methodology for modeling rotors using finite elements and, since then, this
methodology has been widely used and incorporated into simulation commercial softwares. The idea is to divide the shaft
in several segments (elements) whose geometry can be represented by a cylinder of constant radius. The authors based
the formulation of the shaft finite elements on Euler-Bernoulli beam assumptions, thus being suitable for slender shafts
whose shear stresses in bending can be neglected (L/D > 10).

Each shaft element has a translational mass matrix (MT
e ), a rotational mass matrix (MR

e ), a gyroscopic matrix (Ge),
and a stiffness matrix (Ke), resulting to the following equation of motion for one shaft element:

(

MT
e + MR

e

)

q̈e − ΩGe q̇e + Ke qe = 0 (1)

where qe is the nodal displacement vector, containing the eight degrees-of-freedom of the shaft element (two translations
and two rotations in each node).

By combining the individual matrices of each shaft element, one can obtain the global matrices that represent the
whole shaft, thus resulting to the following equation of motion:

(

MT + MR
)

q̈− ΩGq̇ + Kq = 0 (2)

where MT is the global translational mass matrix, MR is the global rotational mass matrix, G is the global gyroscopic
matrix, K is the global stiffness matrix, and q is the displacement vector containing all 4(ne + 1) degrees-of-freedom of
the shaft elements that represent the physical shaft (ne is the number of shaft elements).

The simplicity of the method lies on the fact that bearings and disks (a simplified model for a pump or a turbine)
can also be represented by matrices: the bearings are represented by stiffness and damping matrices and, the disks are
represented by inertia and gyroscopic matrices. Hence, one can include bearing and disks in the model by adding their
respective matrices to the global matrices of the shaft, in the positions relative to the degrees-of-freedom of the nodes they
are attached to. By including the bearing and disks models, one arrive at the global equation of motion of the rotating
system:

Mq̈ + (D− ΩG) q̇ + Kq = 0 (3)

where M is the global inertia matrix including shaft translational and rotational inertia and disk inertia effects, D is the
global damping matrix including bearing damping effects, G is the global gyroscopic matrix including shaft and disk
gyroscopic effects and, K is the global stiffness matrix including shaft and bearing stiffness effects.

3. EIGENVALUE SENSITIVITY ANALYSIS

The equation of motion of the rotating system modeled by shaft finite elements (Eq.(3)) can be rewritten in state space
as follows:

A ṡ + Bs = 0 (4)

where:

A =

[

0 M

M D− ΩG

]

(5)

B =

[

−M 0

0 K

]

(6)
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s =
{

q̇ q
}T

(7)

By assuming a harmonic solution to Eq.(4), one arrives at the eigenvalue problems of the system:

(λiA + B)Φi = 0 (8)
(

λiA
T + BT

)

Ψi = 0 (9)

where λi is the i-th eingenvalue, Φi is the right eigenvector and, Ψi is the left eigenvector of the system. The eigenvectors,
in state space formulation, satisfy the biorthogonality relations:

ΨT
j AΦi = Riδij

ΨT
j BΦi = −λiRiδij

(10)

where δij is the Kronecker delta function. The premultiplication of Eq.(8) by ΨT
i results in the scalar equation:

ΨT
i (λiA + B)Φi = 0 (11)

The differentiation of Eq.(11) with respect to a parameter p and, use of biorthogonality relationships (Eq.(10)), results
in the expression for eigenvalue derivatives (Nordmann, 1982; Rajan et al. 1986):

∂λi

∂p
= −

1

Ri

ΨT
i

(

λi

∂A

∂p
+

∂B

∂p

)

Φi (12)

Equation (12) gives an expression for the derivative of the i-th eingenvalue with respect to the parameter p. As one can
see, this derivative is a function of the left and right eigenvectors of the system and of the derivatives of matrices A and
B with respect to p. By taking advantage of the properties of matrices A and B one can develop an efficient procedure
for calculating ∂λi/∂p and tackling the inverse problem.

3.1 Element Sensitivity Matrices

To perform a shape optimization of the shaft radii as a function of the desired eigenfrequencies, one has to know the
derivative of the i-th eingenvalue with respect to the shaft radius r. Hence, expanding Eq.(12), one has:

∂λi

∂r
= −

1

Ri

ΨT
i

(

λi

∂A

∂r
+

∂B

∂r

)

Φi = −
1

Ri

ΨT
i






λi







0
∂M

∂r
∂M

∂r

∂D

∂r
− Ω

∂G

∂r






+







−
∂M

∂r
0

0
∂K

∂r












Φi (13)

As one can see, the calculation of ∂λi/∂r depends on the derivatives of all global matrices with respect to r. Con-
sidering that, the shaft is modeled by ne elements and each element may have a different radius, one has to perform the
derivatives with respect to each element radius rj . Hence, the differentiation of the global matrices with respect to the
radius of the j-th shaft element results in:

4j − 3 4j + 4

∂M

∂rj

=











0 0 0

0
2

rj

MT
ej +

4

rj

MR
ej 0

0 0 0











4j − 3

4j + 4

(14)

4j − 3 4j + 4

∂G

∂rj

=











0 0 0

0
4

rj

Gej 0

0 0 0











4j − 3

4j + 4

(15)

∂D

∂rj

= 0 (16)
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4j − 3 4j + 4

∂K

∂rj

=











0 0 0

0
4

rj

Kej 0

0 0 0











4j − 3

4j + 4

(17)

where MT
ej and MR

ej are the translational and rotational mass matrices of the j-th shaft element, Gej is the gyroscopic
matrix of the j-th shaft element and, Kej is the stiffness matrix of the j-th shaft element, given by Nelson and McVaugh
(1976). The damping matrix D does not depend on the shaft radius and depends only on the bearing damping.

As one can see, due to the characteristics of the global matrices, the derivatives with respect to the j-th shaft radius are
null matrices, with non zero coefficients only in the row and columns correspondent to the j-th shaft element. Besides,
these non zeros coefficients are proportional to the shaft element matrices. Hence, one can simplify Eq.(13), as follows:

∂λi

∂rj

= −
1

Ri

Ψ̂T
i






λi







0
2

rj

MT
ej +

4

rj

MR
ej

2

rj

MT
ej +

4

rj

MR
ej −Ω

4

rj

Gej






+







−
2

rj

MT
ej −

4

rj

MR
ej 0

0
4

rj

Kej












Φ̂i (18)

where Ψ̂i contains the rows 4j − 3 to 4j + 4 and 8j − 3 to 8j + 4 of the left eigenvector Ψi and, Φ̂i contains the rows
4j − 3 to 4j + 4 and 8j − 3 to 8j + 4 of the right eigenvector Φi.

Equation (18) gives an expression for the derivative of the i-th eigenvalue with respect to the j-th shaft radius. This
expression depends on the right and left eigenvectors, the shaft element matrices and the shaft radius and, all this infor-
mation is known after modeling the system. Hence, one arrived at a simple way of calculating λi/∂rj , which can be
easily implemented computationally and has the advantage of working with reduced 16 × 16 matrices instead of the full
4(ne + 1)× 4(ne + 1) state space matrices of Eq.(13).

4. SHAPE OPTIMIZATION ALGORITHM

In order to perform a shape optimization of the shaft as a function of the desired eigenfrequencies, one adopts the
Newton-Raphson Method. An expansion in Taylor series of the i-th eigenvalue as a function of the j-th shaft radius results
in:

λi = λo
i +

∂λi

∂rj

∣

∣

∣

∣

o
(

rj − ro
j

)

(19)

where λo
i and ∂λi/∂rj |

o are evaluated for a rj = ro
j .

Thus, the inverse problem is given by:

rj = ro
j +

(

∂λi

∂rj

∣

∣

∣

∣

o)−1

(λi − λo
i ) (20)

The Newton-Raphson Method adopts Eq.(20) as an updating law in the recursive algorithm. Hence, for the n-th
iteration of the algorithm, one has:

rn+1

j = rn
j +

(

∂λi

∂rj

∣

∣

∣

∣

n)−1
(

λR
i − λn

i

)

(21)

where λR
i is the desired eigenvalue (reference).

If the system has ne shaft elements and one considers m eigenvalues, the iteration equation (21) can be rewritten as
follows:

rn+1
ne×1 = rn

ne×1 + (Jn)
−1

ne×m

(

ΛR −Λn
)

m×1
(22)

where r contains the ne shaft radii rj , Λ contains the m eigenvalues, ΛR contains the m desired eigenvalues and, J is the
Jacobian matrix, given by:

J =





















∂λ1

∂r1

∂λ1

∂r2

· · ·
∂λ1

∂rne

∂λ2

∂r1

∂λ2

∂r2

· · ·
∂λ2

∂rne

...
...

...
∂λm

∂r1

∂λm

∂r2

· · ·
∂λm

∂rne





















m×ne

(23)
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Equation (22) can be used to calculate the necessary radii of each shaft element in the rotating system for achieving
the desired ΛR eigenvalues. The iteration procedure can be stopped when the norm

∣

∣ΛR −Λn
∣

∣ lies within an adopted

tolerance. If ne 6= m, then a pseudo-inverse operation must be adopted in the procedure for finding (Jn)
−1.

Experience shows that the algorithm has good convergence when ne ≥ m. In the case that ne < m, i.e. the number
of desired eigenvalues is greater than the number of shaft elements in the model, one suggests to increase the number
of elements that represent the model. This procedure will not jeopardize the results and will guarantee the algorithm
convergence.

4.1 Numerical Results

The rotating system in study is composed of three disks, supported by two self aligning ball bearings, and whose
dimensions are shown in Fig.1. Its operational range is between 60 and 70 Hz (rotating frequency).

Figure 1. Rotating system in study (dimensions in mm). Figure 2. Finite element model of the rotating system.

This rotating system can be modeled by finite elements as shown in Fig.2. The resultant model has 8 shaft elements,
9 nodes and, the inertia and gyroscopic effects of the disks are located at nodes 4, 5 and 6. The bearing damping and
stiffness are located at nodes 2 and 8. Considering that one has ball bearings, the adopted stiffness is 108 N/m and the
adopted damping is 10 N/m/s, in each orthogonal directions (translations). No cross-coupling coefficients were adopted
for damping and stiffness.

The Campbell diagram of the rotating system in study is presented in Fig.3. As one can see, the system crosses its
first two critical speeds, related to the first bending modes of the shaft, at 35.9 Hz and 37.5 Hz. The third critical speed,
related to the second bending mode of the shaft, lies within the operational range of the system, at 66.7 Hz. This is an
unacceptable condition and it is necessary to change the system to avoid such resonances at the operational range.
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Figure 3. Campbell diagram of the rotating system in study (pristine condition).

The proposed procedure is applied to find the necessary shaft radii that shift the second critical speed beyond the
operational range of the system. In addition, it is interesting to keep the first two critical speeds unchanged, because
they are far from the operational range. This is done by keeping the natural frequency of the first mode unchanged and
changing the natural frequency of the second mode, at null rotating frequency (Ω = 0). The natural frequency associated
to the first bending mode of the shaft has a value of 36.4 Hz at Ω = 0 and, the natural frequency associated to the second
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bending mode of the shaft has a value of 90.2 Hz at Ω = 0 (Fig.3). Hence, by choosing the second natural frequency as
120 Hz at Ω = 0, the reference vector with desired eigenvalues has the form:

Im(ΛR) =















228.71
228.71
753.98
753.98















rad/s ≡















36.4
36.4

120.0
120.0















Hz (24)

where ΛR only contains the positive imaginary part of the desired eigenvalues. The negative imaginary part of the desired
eigenvalues has similar values, with opposite signal, and will present same sensitivity. Hence, they are not considered for
simplicity. The reference vector is composed of 4 eigenvalues (m = 4), whereas there are 8 shaft elements (ne = 8).
Thus, this is a condition where ne > m and convergence is guaranteed. The procedure resulted in the shaft radii listed in
Tab.1, considering two modes.

The Campbell diagram of the rotating system with the optimized shaft considering two modes is presented in Fig.4(a).
As one can see, the system crosses its first two critical speeds at 33.8 Hz and 40.5 Hz, thus not representing a major
change compared to the pristine condition. The third critical speed, related to the second bending mode of the shaft, now
lies beyond the operational range of the system, at 87.6 Hz. Hence, the objective of keeping the first two critical speeds
and shifting the third critical speed beyond the operational range has been accomplished. The frequency response function
of the shaft at null rotating frequency (Fig.4(b)) shows that the first natural frequency remained unchanged at 36.4 Hz,
whereas the second natural frequency was successfully moved to 120 Hz.
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Figure 4. Dynamic behavior of the rotating system with optimized shaft considering 2 modes.

It is interesting to note that, the natural frequencies not considered in the optimization procedure (3rd and 4th modes)
also presented different values from those of the pristine condition (Fig.4(b)). This is a consequence of only choosing the
eigenvalues related to the first two modes of the system. The optimization procedure looked for a solution that fulfilled the
requirements stated by Eq.(24) and, the solution was found disregarding the effects on the remaining natural frequencies.

Alternatively, the procedure also works considering more frequencies. For example, one can keep the natural frequency
of the first, third and fourth modes unchanged and change the natural frequency of the second mode, at null rotating
frequency (Ω = 0). The natural frequencies associated to the third and fourth bending modes of the shaft have values of
170.1 and 250.1 Hz, respectively, at Ω = 0 (Fig.3). Hence, by choosing the second natural frequency as 120 Hz, the
reference vector with desired eigenvalues has the form:

Im(ΛR) =
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Hz (25)

Again, ΛR only contains the positive imaginary part of the desired eigenvalues and the negative imaginary part was
not considered for simplicity. The reference vector is composed of 8 eigenvalues (m = 8), thus this is a condition where
ne = m and convergence is guaranteed. The procedure resulted in the shaft radii listed in Tab.1, considering four modes.
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The Campbell diagram of the rotating system with the optimized shaft considering four modes is presented in Fig.5(a).
As one can see, the system crosses its first two critical speeds at 33.8 Hz and 39.7 Hz, again not representing a major
change compared to the pristine condition. The third critical speed, related to the second bending mode of the shaft, also
lies beyond the operational range of the system, at 87.3 Hz. Hence, the objective of keeping the first two critical speeds
and shifting the third critical speed beyond the operational range has been accomplished. The frequency response function
of the shaft at null rotating frequency (Fig.5(b)) shows that the first, third and fourth natural frequencies were minimally
changed to 36.2 Hz, 169.7 Hz and 249.4 Hz, whereas the second natural frequency was successfully moved to 120 Hz.
This slight change in the natural frequencies are caused by rounding errors in the values of shaft radii presented in Tab.1
(the solution has more than one decimal value).
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Figure 5. Dynamic behavior of the rotating system with optimized shaft considering 2 modes.

Table 1. Shaft radii obtained by the shape optimization procedure (dimensions in mm).

condition r1 r2 r3 r4 r5 r6 r7 r8 shape

pristine 5.0 5.0 10.0 15.0 15.0 10.0 5.0 5.0

2 modes 5.9 5.9 12.8 12.8 12.8 12.8 5.9 5.9

4 modes 6.3 6.3 14.0 14.5 12.2 10.6 6.2 6.2

As one can see, the procedure managed to find a shape solution to the shaft that presents the desired natural frequencies
(Tab.1). Again, the optimization procedure looked for a solution that fulfilled the requirements stated by Eq.(25), and the
solution was found disregarding the effects on the remaining natural frequencies. Nothing can be said about the other
natural frequencies not considered in the analysis (fifth, sixth, etc).

5. CONCLUSIONS

In this work, one presents a practical, low time consuming procedure for finding the shaft geometry (shaft radii) of
rotating machines, whose dynamic characteristics results in desired eigenfrequencies and critical speeds.

The numerical examples show that it is possible to find design solutions for the shaft, keeping certain natural frequen-
cies at null rotating frequency unchanged whereas others are moved to desired values. Considering that the procedure
performs a modal reduction during the evaluation of the sensitivity parameters, nothing can be said about the unconsid-
ered natural frequencies in the analysis. These frequencies will probably change by the adoption of the found design
solution.

The procedure has good convergence when the number of shaft elements are greater or equal the number of considered
eigenvalues (ne ≥ m). A satisfactory solution for the case that ne < m is refining the model by adding more shaft
elements. Refining the model will not jeopardize the results (it actually improves precision) and will guarantee the
algorithm convergence.

By adopting the proposed optimization algorithm, one can obtain reasonable design solutions for the shaft. This pro-
cedure can help engineers to find the best solution for their rotating machine in early stages of design. The procedure can
also be used for model updating, setting the experimentally measured frequencies as desired frequencies, and obtaining
the updated shaft shape (radii) to be used in the model.
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