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Abstract. This work assesses the plastic behavior of a pressurized aluminum pipe sealed at both ends with and without 
composite repair patches attached. The plastic behavior of the aluminum material is incorporated into the numerical 
analyses performed and the von Mises yield criterion with associated plasticity is adopted. The objective is to verify 
what the yield strength of the overall pipe is and what happens after yielding, depending on the configuration selected 
for the laminate patch and the severity of the damage in the metallic pipe. A finite element (FE) code is developed 
based on: (i) the bi-quadratic Lagrange element with 9 nodes, (ii) the Mindlin theory with out-of-plane shear strains, 
and (iii) orthotropic materials. The strain× displacement relations are assumed linear including the inherent shell 
curvature effect although the constitutive equation is nonlinear, accounting for plastic effects. The FE code results are 
compared against those obtained by the commercial package MSC.Nastran. 
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1. INTRODUCTION 
 

As of the beginning of the eighties there is growing interest in the use of composite materials reinforced with fibers 
in the aeronautical and space businesses (Almeida, 1982; Levy Neto, 1983). Thereafter, is applicability has been 
widespread to the automotive, naval, chemical, oil and civil engineering applications. Examples of application include: 
structural aerospace components, shafts, pipes and pressure vessels, wet (marine) structures, trusses, masts, panels, 
sandwich beams, etc. Reinforced composites are increasingly important and its applicability to pipeline repair has been 
growing steadily (Levy Neto et al., 2000; Levy Neto et al., 2005). Brazilian experiences involving composites can are: 
(i) stabilizers of the SONDA IV rocket (Almeida, 1982), (ii) leading edges of the Embraer 120 aircraft (Levy Neto, 
1983), (iii) motor case of the fourth stage of the VLS rocket (Palmério, Levy Neto, 1994; Levy Neto, Gonçalves, 2001). 
In the international scene, Boeing has recently launched an ambitious project of building a commercial jet mostly based 
on composite design: the 787 dreamliner. 

Despite its advantages, the design of composite structures is complicated by the wide variety of matrix and fiber 
reinforcement materials available, the potential of stress concentrations, thermal residual stresses from the 
manufacturing process, the choice of ply thicknesses and number of plies, the necessity of considering riveted and 
bonded joints in large structures, and the spatial variation of ply orientation. Other design variables related to the 
structure topology and geometry are also often considered. 

The objective of this paper is to present the calculations and simulations describing the elastic and plastic regimes a 
pressurized aluminum pipe sealed at both ends, with and without composite repair patches attached. The simulations 
conducted are based on a finite element code specially developed for this work based on the Mindlin theory (de Faria, 
2000) where transverse shear effects are incorporated and a bi-quadratic Lagrange element with nine nodes (Hughes, 
1987). The original pipe configuration assumed is that of a purely metallic cylinder worn out over a well defined region. 
A composite repair patch is then added on top of this weaker region and a new simulation is conducted to observe the 
stress re-distribution. The inherently nonlinear plastic analysis performed assumes the von Mises yield criterion with 
associated plasticity (Kachanov, 2004; Owen, 1980). The main objective of this nonlinear analysis is to gain insight into 
the plastic response of the repaired structure and to estimate the overall repaired pipe strength. The stress × strain 
relations are assumed linear and take into account the cylindrical shell curvature, although the constitutive equation is 
nonlinear, reflecting plastic effects. The FE code results are compared against those obtained by the commercial 
package MSC.Nastran. 
 
2. IMPLEMENTATION OF THE LINEAR FINITE ELEMENT CODE  
 

A finite element code for circular cylindrical orthotropic shells has been developed to conduct the necessary 
numerical simulations. This code assumes a linear elastic regime of the material but is the basis for the nonlinear plastic 
code to be introduced subsequently. The strain × displacement relations for circular cylindrical shells are: 
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where x is the coordinate measured along the x axis, θ is the circumferential coordinate, z the coordinate along the axis 
perpendicular to the cylinder surface and u , v , w  are the displacements of an arbitrary point of the cylinder, 
described along x, θ and z, respectively. In general, u , v , w  are functions of x, θ and z. Equation (1) may be re-
written assuming the circumferential coordinate y = Rθ such that 
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The finite element implemented follows the Mindlin theory according to which: 
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the expression for the total potential energy is 
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In Eq. (5) it is assumed that a uniform normal membrane force xxN  exists in the longitudinal direction and a 

uniform shear membrane force xyN  exists. Matrices A, B, D, As, Bs and Ds are defined based on the constitutive 

equations of each lamina in the laminate, that is, 
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and matrices A, B, D, As, Bs and Ds are given by 
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It is observed in Eq. (7) that the integrals are evaluated from 0 to t, where t is the total laminate thickness. These 

definitions for A,..., Ds are not those traditionally found when the integration is from −t/2 to +t/2. The difference lies in 
the location of the reference surface. In Eq. (7) the reference surface is the innermost whereas traditionally the mid 
surface is assumed as the reference surface. Equation (5) is the basis for the discretization employed in finite element 
method. Figure 1 shows the bi-quadratic finite element implemented with 9 nodes. The applicable interpolation 
functions are 
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Figure 1. Bi-quadratic finite element 
 

From the interpolation functions φi presented in Eq. (8) a number of useful vectors can be defined: 
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where ui, vi, wi, ψxi e ψyi are the nodal degrees of freedom of node i. The problem discretization follows from Eqs. (8) 
and (9). Within any element the displacements and rotations are interpolated: 
 

yx yxwvu wvu ψψ ψψ φqφqφqφqφq ===== . (10) 

 
The strain relations shown in Eq. (4) can also be discretized with Eq. (10) yielding 

 

qΦq

φ0000

00000

φ0φφ0

0φφ00

κ

γ
Φqq

φφ000

φ0000

0φ000

000φφ

00φφ0

0000φ

κ

ε
s

y

x

s

xy

y

x

xy

y

x

p

R

R

R

=


















−

−
=









=



























=








/

/
,

/

,

,

0

,,

,

,

,,

,

,

0
. (11) 

 
The derivatives of the interpolation functions φi in Eq. (11) are taken with respect to the global coordinates x, y. 

However, the interpolation functions are defined in terms of element local coordinates ξ, η. In order to make the change 
of variables the usual jacobian matrix must be computed. Isoparametric mapping is adopted, i.e., the same interpolation 
functions used for displacements are used for coordinates. 

Substitution of Eq. (11) in Eq. (5) leads 
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From Eq. (12) the element stiffness matrix K e and the element load vector fe are: 
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Equation (13b) must be carefully interpreted. Only elements that possess one edge coincident on the cylinder edges 

(x = ±L) will have their load vectors affected by the second integral from 0 to 2πR. 
The integrations required to computing the element stiffness matrices and load vectors are done numerically 

through Gauss quadrature. For the bi-quadratic element it is recommended the use of the 3-point quadrature per 
direction, with a total of 9 points in two dimensions. However, the formulation based on the Mindlin theory leads a 
well-known numerical flaw: shear locking. This problem can be overcome by reduced selective integration. Hence, the 
first integral in Eq. (13a) and the load vector are obtained with 9 points whereas the second integral is computed with 
only 4 points (2 per direction). 
 
2.1. Linear elastic analysis of a damaged pipe 
 

The constitutive laws presented in Eq. (6) are applicable to composites as well as isotropic materials, with changes 

in the Q  and sQ  matrices. Therefore, initially only metallic cylinders were simulated. The simulation of a damaged 

metallic cylinder is done assuming a cylinder with two distinct regions: one (intact) with 2 mm thickness and one 
(damaged) with 1 mm thickness, as shown in Fig. 2. The cylinder has total length L = 1 m, radius R = 7.5 cm, Young 
modulus 210 GPa and Poisson coefficient 0.3. The length of the damaged region is l = 125 mm. 

 
Figure 2. Damaged metallic cylinder 
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The applicable boundary conditions correspond to infinitely rigid caps, i.e., zero displacements v, w, ψx e ψy. This 

condition allows for displacement in the longitudinal direction only. The applied load is divided in two parts: pressure 
in the cylinder radial direction and longitudinal membrane forces of magnitude πpR2 on the cylinder edges, where p = 1 
atm. Under these conditions the result obtained is illustrated in Fig. 3 where it can be seen a detail confirming the 
presence of high gradients in the interface between intact and damaged zones. The solution seen in Fig. 3 is obviously 
axi-symmetric. 
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Figure 3. Damaged metallic cylinder under internal pressure 
 

Figure 4 shows the variation of w with x and facilitates the observation of the strong gradients as seen in Fig. 3. The 
edge effects near the cylinder extremities as well as the potential deleterious effect of the damaged region can be fully 
appreciated. 
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Figure 4. Damaged metallic cylinder: edge effects 

 
3. NUMERICAL METHODS IN PLASTICITY 
 

Through displacement based formulations several solid mechanics problems may be written as: 
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where matrix ΦΦΦΦ is presented in Eq. (11). Displacements and deformations may be approximated by 
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In general, σσσσ depends on εεεε in a nonlinear fashion and, moreover, depends on the loading path followed. The 

tangential stiffness matrix is defined as 
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The form assumed by matrix K T in Eq. (16) is particularly convenient since it is the exactly the form obtained in the 

theory of elasticity. In the case of nonlinear elasticity (hyperelasticity), the stress × strain relation is unique and path 
independent. On the other hand, plastic effects depend on the loading path and, particularly, depend on loading or 
unloading. In order to employ the laws of plasticity it is necessary to know when the material enters plastic regime. This 
point is known as yield point and it is located on a yield surface given by: 
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where κ is the hardening parameter. This yielding condition can be visualized as a surface in the stress space whose 
position and orientation depend on parameter κ. Von Mises was the first one to suggest that the basic behavior of plastic 
strain increments relates to the yield surface. Nowadays, the normality principle is widespread: if dεεεεp is the plastic strain 
increment then 
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where dλ is a proportionality constant. The principle is known as normality principle since it requires dεεεεp to be 
perpendicular to surface F. Restrictions to this model may be removed if a plastic potential Q = Q(σσσσ,κ) is defined such 
that Eq. (19) is valid just replacing F by Q. The case when Q = F is known as associated plasticity. 

During an infinitesimal stress increment the resulting strains can be split into elastic and plastic components. This is 
known as additive decomposition as opposed to multiplicative decomposition required in large strain problems. Thus, 
 

λd
Q

dddd pe

σ
σDεεε

∂
∂+=+= −1

. (20) 

 
The plastic strain increment dεεεεp is present only if the elastic stress increment dσσσσe = Ddεεεε tends to push the stresses 

outside the yield surface, i.e., if it is in the direction of plastic loading. If, on the other hand, dσσσσe is such that unloading 
occurs, then there is no plastic strain. This test is therefore essential to differ between loading and unloading, and 
emphasizes the importance of the loading path followed. When plastic loading occurs, the stresses are on the yield 
surface given by Eq. (18). Differentiating Eq. (18), 
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Defining 
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Eqs. (20) and (21) can be written as 
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The constant dλ may now be eliminated from Eq. (23). Multiplying the first line of Eq. (23) by (∂F/∂σσσσ)TD and 

substituting the result into the second line of Eq. (23) gives 
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which plugged back into Eq. (23) yields 
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where Dep is the elastoplastic matrix. This matrix is symmetric only when associated plasticity holds (Q = F). Dep is 
defined even when the plasticity is ideal (or perfect) since, in this case, A = 0, because F is independent of κ. The 
difficulty in obtaining matrix Dep is in the computation of parameter A, up to now unknown. A thermodynamically 
consistent way of finding A is to admit that κ relates to the work of hardening defined as the work done during plastic 
deformation, that is, 
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Substitution of Eq. (19) with F replaced by Q into (26) results in 
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Finally, introducing Eq. (27) into (22), 
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The yield surface F must be known in order to use the relations obtained. The most commonly employed form for 

metals is the von Mises surface: 
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where Y(κ) is the uniaxial yield stress and σVM von Mises stress or second order invariant. Differentiating Eq. (29), 
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where sx, sy e sz are the deviatoric stresses, i.e., sx = σx – (σx + σy + σz)/3, etc. If a curve obtained experimentally in a 
uniaxial test is available providing σVM versus plastic deformations εu

p and, if κ represents the work of hardening, then 
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and hence, 
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where H is the inclination of the curve obtained from the uniaxial test. Admitting associated plasticity and, substituting 
Eq. (32) into (28), it can be shown that A = H, where H is also known as plasticity modulus. This last expression 
establishes the well-known Prandtl-Reuss stress × strain relations. The expressions obtained completely describe the 
stress × strain relations in the elastoplastic state. The nonlinearity is evident from Eq. (25). An algorithm that can be 
used to solve the nonlinear plastic problem is (Zienkiewicz et al, 1969): 
 

1. Apply load increment and determine corresponding elastic stress increments ∆σσσσ1’ and strain increments ∆εεεε1’; 
2. Add ∆σσσσ1’ to the stresses σσσσ0 existing prior to the load increment to obtain σσσσ’. Check if F(σσσσ’) < 0 (κ related to 

the initial state σσσσ0). If the inequality holds, only elastic deformation occurs and the process stops. On the 
contrary, continue to step 3; 

3. If F(σσσσ’) ≥ 0 and also F(σσσσ0) = 0 (that is, the element was yielded), find ∆σσσσ1 by Eq. (25): ∆σσσσ1 = Dep ∆εεεε1’, with 
Dep obtained at state σσσσ’; 

4. Compute residual stresses that must be sustained by body forces: ∆σσσσ1’’ = ∆σσσσ1’ − ∆σσσσ1; 
5. Store current stress σσσσ = σσσσ’ − ∆σσσσ1’’, strain εεεε = εεεε’ + ∆εεεε1’ and displacement u = u’ + ∆u1; 
6. If F(σσσσ’) ≥ 0 but F(σσσσ0) < 0, find the intermediate value of stress when yielding begins and compute ∆σσσσ1 = Dep 

∆εεεε1’ from that point; 
7. Compute nodal forces corresponding to ∆σσσσ1’’, i.e., for each element evaluate pe = ∫ΦΦΦΦT∆σσσσ1’’ dΩe; 
8. Solve the new system of equations with the original elastic properties and the global vector p to find ∆σσσσ2’ and 

∆εεεε2’; 
9. Compute the updated value of κ; 
10. Repeat 2 thru 9, etc. 

 
The algorithm ends when the nodal forces pe are small. If it does not happen in a number of iterations (20 in this 

work) then collapse condition has been reached. 
 
3.1. Plastic analysis of a damaged pipe 
 

The same pipe simulated in section 2.1 is used in the simulations of plasticity. The yield stress assumed is 400 MPa 
whereas perfect plasticity is considered, i.e., A = 0 in Eq. (25). The pressure is steadily increased until collapse is 
reached. Figure 5 shows that collapse is suddenly reached at a pressure of about 58 atm. wMAX  is the maximum 
transverse displacement in absolute value. Comparison against the commercial code MSC.Nastran attests to the 
accuracy of the finite element code implemented. Small discrepancies are observed in the plastic regime because the 
plasticity models and algorithms do not match exactly. 
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Figure 5. Perfectly plastic response of damaged cylinder 
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3.2. Plastic analysis of a repaired pipe 
 

The pipe just simulated is now repaired using one layer of AG370-8H /AS4 from Hexel® with 1.0 mm thickness, 
which corresponds to the depth of the groove damage. The composite repair is made of balanced woven fabrics where 
the longitudinal and transverse elastic modulus can be assumed equal (E1 = E2) and, consequently, ν12 = ν21. The 
volume fraction of fibers and matrix are assumed 50% what leads to the mechanical properties E1 = E2 = 65.18 GPa, ν12 
= ν21 = 0.05 and G12 = G13 = G23 = 4.66 GPa. 
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Figure 6. Metallic cylinder with composite repair: edge effects 

 
When an internal pressure of 1 atm is applied the transverse displacements observed are shown in Fig. 6. The 

beneficial effects of the composite repair can be noticed since the transverse displacement with the damaged zone is 
now closer to that of the intact cylinder. 

A nonlinear plastic analysis of the repaired pipe can be conducted. Plasticity effects are considered to be restricted 
to the metal, i.e., the composite is layer is assumed to be completely elastic and its strength is assumed infinite. This is 
not a physically realistic assumption but, since the plastic yield stress adopted is significantly lower than the failure 
stresses of the composite, this is a reasonable assumption. 

Figure 7 shows the result obtained by the simulation. It is obvious that, after a critical pressure is reached, plastic 
effects take over the metal, significantly reducing its stiffness. Subsequent pressure increments are supported only by 
the composite repair. The critical pressure is the simulation is about 78 atm. 
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Figure 7. Perfectly plastic response of a repaired cylinder 



 
4. CONCLUSIONS 
 

The critical pressure load observed in the case of a damaged pipe without repair corresponds to the ultimate 
pressure allowed. Pressure increments beyond that point lead to a sudden collapse as illustrated in Fig. 5. On the other 
hand, a repaired pipe can sustain pressures substantially beyond the critical pressure where plastic effects become 
present. An ultimate failure analysis in the case of a repaired pipe would involve the application of composite failure 
theories and damage progress models. 

Figure 6 shows that the composite repair tends to decrease the transverse displacement in the damaged region. The 
composite material selected as repair has an elastic modulus of 65.18 GPa, which is considerably lower that the 210 
GPa of the metal. It is expected that elastic modulus closer to that of the metal would make the jumps observed in Figs. 
4 or 6 less pronounced. However, for pressures loadings beyond the critical pressure, a modulus as high as possible 
would be the primary objective 
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