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Abstract. This work assesses the plastic behavior of a pressurized aluminum pipe sealed at both ends with and without
composite repair patches attached. The plastic behavior of the aluminum material is incorporated into the numerical
analyses performed and the von Mises yield criterion with associated plasticity is adopted. The objective is to verify
what the yield strength of the overall pipe is and what happens after yielding, depending on the configuration selected
for the laminate patch and the severity of the damage in the metallic pipe. A finite element (FE) code is developed
based on: (i) the bi-quadratic Lagrange element with 9 nodes, (ii) the Mindlin theory with out-of-plane shear strains,
and (iii) orthotropic materials. The strainx displacement relations are assumed linear including the inherent shell
curvature effect although the constitutive equation is nonlinear, accounting for plastic effects. The FE code results are
compared against those obtained by the commercial package MSC.Nastran.
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1. INTRODUCTION

As of the beginning of the eighties there is grayiimterest in the use of composite materials reagd with fibers
in the aeronautical and space businesses (Almdi@i@2; Levy Neto, 1983). Thereafter, is applicapilitas been
widespread to the automotive, naval, chemicaland civil engineering applications. Examples oflegagion include:
structural aerospace components, shafts, pipespeasbure vessels, wet (marine) structures, trussasts, panels,
sandwich beams, etc. Reinforced composites areasirgly important and its applicability to pipelirepair has been
growing steadily (Levy Neto et al., 2000; Levy Netoal., 2005). Brazilian experiences involving garsites can are:
(i) stabilizers of the SONDA |V rocket (Almeida, 8®), (ii) leading edges of the Embraer 120 airc(aéivy Neto,
1983), (iii) motor case of the fourth stage of YHeS rocket (Palmério, Levy Neto, 1994; Levy Netmr@alves, 2001).
In the international scene, Boeing has recentlpdhed an ambitious project of building a commerjgtimostly based
on composite design: the 787 dreamliner.

Despite its advantages, the design of compositetsiies is complicated by the wide variety of maaind fiber
reinforcement materials available, the potential sifess concentrations, thermal residual stresses fthe
manufacturing process, the choice of ply thicknessed number of plies, the necessity of considerveted and
bonded joints in large structures, and the spataiation of ply orientation. Other design variableelated to the
structure topology and geometry are also oftenidensd.

The objective of this paper is to present the datmns and simulations describing the elastic plagdtic regimes a
pressurized aluminum pipe sealed at both ends, avithwithout composite repair patches attached. siihelations
conducted are based on a finite element code dlyed@veloped for this work based on the Mindlirdny (de Faria,
2000) where transverse shear effects are incogmbiatd a bi-quadratic Lagrange element with nindesaqHughes,
1987). The original pipe configuration assumedés df a purely metallic cylinder worn out over alldefined region.
A composite repair patch is then added on top isfuleaker region and a new simulation is condutteobserve the
stress re-distribution. The inherently nonlineaaspic analysis performed assumes the von Mised gigderion with
associated plasticity (Kachanov, 2004; Owen, 1986 main objective of this nonlinear analysisoigain insight into
the plastic response of the repaired structure tanestimate the overall repaired pipe strength. $inessx strain
relations are assumed linear and take into acdbentylindrical shell curvature, although the c@nsive equation is
nonlinear, reflecting plastic effects. The FE cadsults are compared against those obtained bycdhamercial
package MSC.Nastran.

2. IMPLEMENTATION OF THE LINEAR FINITE ELEMENT CODE

A finite element code for circular cylindrical odfnopic shells has been developed to conduct tleessary
numerical simulations. This code assumes a linkeatie regime of the material but is the basistfier nonlinear plastic
code to be introduced subsequently. The stxaiisplacement relations for circular cylindricaklh are:
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wherex is the coordinate measured alongxhexis, fis the circumferential coordinatethe coordinate along the axis
perpendicular to the cylinder surface aond Vv, W are the displacements of an arbitrary point of ¢lénder,
described along, & andz, respectively. In generall, Vv, W are functions ok, 8 andz Equation (1) may be re-
written assuming the circumferential coordinate Rdsuch that
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The finite element implemented follows the Mindlireory according to which:
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the expression for the total potential energy is
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In Eg. (5) it is assumed that a uniform normal meamk forceNxx exists in the longitudinal direction and a

uniform shear membrane forcﬁxy exists. MatricesA, B, D, A, Bs and D are defined based on the constitutive
equations of each lamina in the laminate, that is,
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and matriced\, B, D, A, Bs andDs are given by
t t t t t t
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It is observed in Eq. (7) that the integrals araleated from O td, wheret is the total laminate thickness. These
definitions forA,..., Ds are not those traditionally found when the intéigrais from-t/2 to +#/2. The difference lies in
the location of the reference surface. In Eq. (i teference surface is the innermost whereadtitmalily the mid
surface is assumed as the reference surface. Bauali is the basis for the discretization employredinite element

method. Figure 1 shows the bi-quadratic finite eamimplemented with 9 nodes. The applicable imtkxtjon
functions are
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Figure 1. Bi-quadratic finite element

From the interpolation functiong presented in Eq. (8) a number of useful vectonsbeadefined:
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whereu;, vi, W, (% e (4; are the nodal degrees of freedom of nbdehe problem discretization follows from Egs. (8)
and (9). Within any element the displacements atations are interpolated:

u=eq, Vv=0q,  W=¢q, ¥=9q, % =9q, . (10)

The strain relations shown in Eq. (4) can alsoiberdtized with Eq. (10) yielding
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The derivatives of the interpolation functiogsin Eq. (11) are taken with respect to the glomirdinatesy, v.
However, the interpolation functions are definedeinms of element local coordinatés. In order to make the change
of variables the usual jacobian matrix must be aatenh. Isoparametric mapping is adopted, i.e., #mesinterpolation
functions used for displacements are used for Goateks.

Substitution of Eqg. (11) in Eq. (5) leads
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From Eq. (12) the element stiffness matixand the element load vectarare:
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Equation (13b) must be carefully interpreted. Celgments that possess one edge coincident on lindeyedges
(x =zL) will have their load vectors affected by the setintegral from 0 to 2R.

The integrations required to computing the elenwiffness matrices and load vectors are done ngalbri
through Gauss quadrature. For the bi-quadratic exhénit is recommended the use of the 3-point quadraper
direction, with a total of 9 points in two dimenss& However, the formulation based on the Mindtiadry leads a
well-known numerical flaw: shear locking. This pleim can be overcome by reduced selective integratience, the
first integral in Eq. (13a) and the load vector abtained with 9 points whereas the second integrabmputed with
only 4 points (2 per direction).

2.1. Linear elastic analysis of a damaged pipe

The constitutive laws presented in Eq. (6) areiapple to composites as well as isotropic materiaith changes

in the Q and QS matrices. Therefore, initially only metallic cytlars were simulated. The simulation of a damaged

metallic cylinder is done assuming a cylinder witfo distinct regions: one (intact) with 2 mm thieles and one
(damaged) with 1 mm thickness, as shown in Fig.H& cylinder has total length= 1 m, radiusR = 7.5 cm, Young
modulus 210 GPa and Poisson coefficient 0.3. Tihgtheof the damaged regionlis 125 mm.

Y

Figure 2. Damaged metallic cylinder
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The applicable boundary conditions correspond fimitely rigid caps, i.e., zero displacementsw, ¢ e (. This
condition allows for displacement in the longitugidirection only. The applied load is divided ot parts: pressure
in the cylinder radial direction and longitudinaémbrane forces of magnitudpR® on the cylinder edges, whepe= 1
atm. Under these conditions the result obtaineflustrated in Fig. 3 where it can be seen a detailfirming the
presence of high gradients in the interface betwetatt and damaged zones. The solution seen in3Fg obviously
axi-symmetric.
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Figure 3. Damaged metallic cylinder under intepraissure

Figure 4 shows the variation wfwith x and facilitates the observation of the strong ignatd as seen in Fig. 3. The
edge effects near the cylinder extremities as aglihe potential deleterious effect of the damaggibn can be fully
appreciated.
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Figure 4. Damaged metallic cylinder: edge effects
3. NUMERICAL METHODS IN PLASTICITY

Through displacement based formulations severa sa¢chanics problems may be written as:

W(@) = [ @000~ =P(q) ~f =0, (14)



where matrix® is presented in Eq. (11). Displacements and deftoms may be approximated by
u= Nq e=@q. (15)

In generalg depends os in a nonlinear fashion and, moreover, depend$ieroading path followed. The
tangential stiffness matrix is defined as
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The form assumed by matrik; in Eq. (16) is particularly convenient since ithg exactly the form obtained in the
theory of elasticity. In the case of nonlinear gtity (hyperelasticity), the stressstrain relation is unique and path
independent. On the other hand, plastic effectenigjen the loading path and, particularly, depemtbading or
unloading. In order to employ the laws of plastiditis necessary to know when the material eréastic regime. This
point is known as yield point and it is locatedaoyield surface given by:

F(e,x) =0, (18)

where « is the hardening parameter. This yielding conditian be visualized as a surface in the stressesphose
position and orientation depend on parameté&fon Mises was the first one to suggest that smdbehavior of plastic

strain increments relates to the yield surface. Altays, the normality principle is widespread:df i the plastic strain
increment then

oF
deP =dd—
% (19)

where dA is a proportionality constant. The principle isolum as normality principle since it requires®do be
perpendicular to surfade Restrictions to this model may be removed ifasfit potential) = Q(o,x) is defined such
that Eq. (19) is valid just replacitgby Q. The case whe@ =F is known as associated plasticity.

During an infinitesimal stress increment the resglstrains can be split into elastic and plastimponents. This is
known as additive decomposition as opposed to phighitive decomposition required in large straiolgems. Thus,

de = de® +ceP =D‘1dc+%‘)d/1_ (20)

The plastic strain incremengftlis present only if the elastic stress increndoit= Dde tends to push the stresses
outside the yield surface, i.e., if it is in theedition of plastic loading. If, on the other hadd is such that unloading
occurs, then there is no plastic strain. This iegherefore essential to differ between loading anloading, and
emphasizes the importance of the loading pathvi@th When plastic loading occurs, the stressesarthe yield
surface given by Eq. (18). Differentiating Eq. (18)

T
sza_ngl+a_ng2+___+a_FdK:(a—Fj ds+a—FdK=0_ (21)
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Egs. (20) and (21) can be written as
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The constantid may now be eliminated from Eq. (23). Multiplyinget first line of Eq. (23) bydf/do)'D and
substituting the result into the second line of &3) gives

HESCE

which plugged back into Eq. (23) yields
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whereDy, is the elastoplastic matrix. This matrix is symrivebnly when associated plasticity hold3 € F). Dg, is
defined even when the plasticity is ideal (or petfesince, in this casé) = 0, becausé& is independent ok. The
difficulty in obtaining matrixDe, is in the computation of paramet@r up to now unknown. A thermodynamically
consistent way of findind is to admit that relates to the work of hardening defined as thekvdmne during plastic
deformation, that is,

dk =0,del +0,def +...=¢" deP. (26)

Substitution of Eq. (19) witk replaced byQ into (26) results in

de=aio 2. (27)
0o

Finally, introducing Eq. (27) into (22),

As———=-—06 —. (28)

The yield surfacé must be known in order to use the relations okthiThe most commonly employed form for
metals is the von Mises surface:

U2
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whereY(x) is the uniaxial yield stress amgy von Mises stress or second order invariant. Dsfiéating Eq. (29),
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wheres,, s, e s, are the deviatoric stresses, ig.7 oy — (6 + g, + 0)/3, etc. If a curve obtained experimentally in a
uniaxial test is available providing,, versus plastic deformatioss’ and, ifx represents the work of hardening, then



dk =P, (31)
and hence,
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whereH is the inclination of the curve obtained from th@axial test. Admitting associated plasticity asdbstituting
Eq. (32) into (28), it can be shown that H, whereH is also known as plasticity modulus. This lastrespion
establishes the well-known Prandtl-Reuss strestgain relations. The expressions obtained comlyietescribe the
stressx strain relations in the elastoplastic state. Ttvdinearity is evident from Eq. (25). An algoriththrat can be
used to solve the nonlinear plastic problem isr{Kiewicz et al, 1969):

1. Apply load increment and determine correspondiagtéd stress incremem®;’ and strain incrementie,’;

2. Add Aog;’ to the stresseg, existing prior to the load increment to obtain Check if F(0”) < 0 (« related to
the initial stategy). If the inequality holds, only elastic deformati@occurs and the process stops. On the
contrary, continue to step 3;

3. If F(g") = 0 and alsd~(ag) = O (that is, the element was yielded), fid; by Eq. (25):A0, = D, Agy’, with

D¢, Obtained at state’;

Compute residual stresses that must be sustainbddyyforcesAo;” = Ag;’ — Aoy;

Store current stress=¢" — Ag;”, straing =€’ + Ag;’ and displacement =u’ + Auy;

6. If F(o") = 0 butF(oy) < 0, find the intermediate value of stress whaslding begins and computss; = D,
Ag,’ from that point;

7. Compute nodal forces corresponding\m”, i.e., for each element evalugpé = [®'Aa,” dQ°;

8. Solve the new system of equations with the origatastic properties and the global vegiaio find Ao,’ and
Agy';

9. Compute the updated value af

10. Repeat 2 thru 9, etc.

o ks

The algorithm ends when the nodal forg€sare small. If it does not happen in a number exfaiions (20 in this
work) then collapse condition has been reached.

3.1. Plastic analysis of a damaged pipe

The same pipe simulated in section 2.1 is useldrsimulations of plasticity. The yield stress assd is 400 MPa
whereas perfect plasticity is considered, ifes 0 in Eq. (25). The pressure is steadily incrdasetil collapse is
reached. Figure 5 shows that collapse is suddezdghed at a pressure of about 58 atmay is the maximum
transverse displacement in absolute value. Comgraragainst the commercial code MSC.Nastran attestthe
accuracy of the finite element code implementedalSdiscrepancies are observed in the plastic reddecause the
plasticity models and algorithms do not match dyact

70
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o) SN AN NS NN WU NS NS SN
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Figure 5. Perfectly plastic response of damageitagt
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3.2. Plastic analysis of a repaired pipe

The pipe just simulated is now repaired using @yed of AG370-8H /AS4 from Hex&lwith 1.0 mm thickness,
which corresponds to the depth of the groove damiBige composite repair is made of balanced wovbrida where
the longitudinal and transverse elastic modulus lbarassumed equakE,( = E;) and, consequentlyy, = 5. The
volume fraction of fibers and matrix are assumeth %@hat leads to the mechanical properkgs E, = 65.18 GPay;,
=V = 0.05 and.;lz = G13 = G23 = 4.66 GPa.

2.50E-06

WINTACT
WDAMAGE
—_— W,

2.00E-06

REPAIRED

1.50E-06

w (m)

1.00E-06 H

ﬁj““‘l““l““
>

5.00E-07

| T T T !
0'00E+08.00 0.25 0.50 0.75 1.00

X (m)

Figure 6. Metallic cylinder with composite repadge effects

When an internal pressure of 1 atm is applied thaswverse displacements observed are shown in6Fighe
beneficial effects of the composite repair can bgced since the transverse displacement with dreadjed zone is
now closer to that of the intact cylinder.

A nonlinear plastic analysis of the repaired pipa be conducted. Plasticity effects are considerdze restricted
to the metal, i.e., the composite is layer is agslito be completely elastic and its strength isi@esl infinite. This is
not a physically realistic assumption but, since fitastic yield stress adopted is significantly éovthan the failure
stresses of the composite, this is a reasonahlengson.

Figure 7 shows the result obtained by the simutatibis obvious that, after a critical pressuredached, plastic
effects take over the metal, significantly reducitsgstiffness. Subsequent pressure incrementsiwgrported only by
the composite repair. The critical pressure issihaulation is about 78 atm.
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Figure 7. Perfectly plastic response of a repaisdichder



4. CONCLUSIONS

The critical pressure load observed in the casa dfamaged pipe without repair corresponds to thienate
pressure allowed. Pressure increments beyond thiatt [pad to a sudden collapse as illustrated ¢ &i On the other
hand, a repaired pipe can sustain pressures stibBfabeyond the critical pressure where plastifeas become
present. An ultimate failure analysis in the caba oepaired pipe would involve the applicationcoimposite failure
theories and damage progress models.

Figure 6 shows that the composite repair tendstwehse the transverse displacement in the dameagieeh. The
composite material selected as repair has an elastdulus of 65.18 GPa, which is considerably lothat the 210
GPa of the metal. It is expected that elastic maslaloser to that of the metal would make the juotpserved in Figs.
4 or 6 less pronounced. However, for pressuresirigadbeyond the critical pressure, a modulus ak hi possible
would be the primary objective
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