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Abstract. Chaos control may be understood as the use of tiny perturbations for the stabilization of unstable periodic
orbits embedded in a chaotic attractor. Since chaos may occur in many natural processes, the idea that chaotic behavior
may be controlled by small perturbations of physical parameters allows this kind of behavior to be desirable in different
applications. In this work, a variable structure controller is employed to the chaos control problem in a nonlinear
pendulum. The adopted approach is based on the sliding mode control strategy and enhanced by an adaptive fuzzy
algorithm to cope with modeling inaccuracies and external disturbances that can arise. The boundedness of all closed-
loop signals and the convergence properties of the tracking error are analytically proven using Lyapunov’s direct method
and Barbalat’s lemma. Numerical results are also presented in order to demonstrate the control system performance.
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1. INTRODUCTION

Chaotic response is related to a dense set of unstable periodic orbits (UPOs) and the system often visits the neighbor-
hood of each one of them. Moreover, chaos has sensitive dependence to initial condition, which implies that the system
evolution may be altered by small perturbations. Chaos control is based on the richness of chaotic behavior and may be
understood as the use o tiny perturbations for the stabilization of an UPO embedded in a chaotic attractor. It makes this
kind of behavior to be desirable in a variety of applications, since one of these UPO can provide better performance than
others in a particular situation. Due to these characteristics, chaos and many regulatory mechanisms control the dynamics
of living systems.

Inspired by nature, it is possible to imagine situations where chaos control is employed to stabilize desirable behaviors
of mechanical systems. Under this condition, these systems would present a great flexibility when controlled, being able
to quickly change from one kind of response to another.

Literature presents some contributions related to the analysis of chaos control in mechanical systems. Andrievskii
and Fradkov (2004) present an overview of applications of chaos control in various scientific fields. Mechanical systems
are included in this discussion presenting control of pendulums, beams, plates, friction, vibroformers, microcantilevers,
cranes, and vessels. Savi et al. (2006) also present an overview of some mechanical system chaos control that includes
system with dry friction (Moon et al., 2003), impact (Begley and Virgin, 2001) and system with non-smooth restoring
forces (Hu, 1995). Spano et al. (1990) explores the ideas of chaos control applied to intelligent systems while Macau
(2003) shows that chaos control techniques can be used in spacecraft orbits. Pendulum systems are analyzed in Pereira-
Pinto et al. (2004, 2005); Wang and Jing (2004); Yagasaki and Uozumi (1997); Yagasaki and Yamashita (1999) using
different approaches.

There are different techniques employed to perform chaos control (Savi et al., 2006; Boccaletti et al., 2000; Ditto and
Lindner, 1995; Pyragas, 1996), however, the inspirational idea of these methods is the well-known OGY method (Ott
et al., 1990), which is a discrete technique that considers small perturbations promoted in the neighborhood of the desired
orbit when the trajectory crosses a specific surface, such as some Poincaré section.

This contribution proposes a robust controller to stabilize UPOs of a nonlinear pendulum that has a rich response,
presenting chaos and transient chaos (De Paula et al., 2006). The adopted approach is based on the sliding mode control
strategy and enhanced by a stable adaptive fuzzy inference system to cope with modeling inaccuracies and external
disturbances that can arise. The boundedness of all closed-loop signals and the convergence properties of the tracking
error are analytically proven using Lyapunov’s direct method and Barbalat’s lemma. Numerical results are also presented
in order to demonstrate the control system performance. Numerical simulations are carried out showing the stabilization
of some UPOs of the chaotic attractor showing an effective response.
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2. CHAOTIC PENDULUM

The nonlinear pendulum considered in this article is based on an experimental set up, previously analyzed by Franca
and Savi (2001) and Pereira-Pinto et al. (2004). De Paula et al. (2006) presented a mathematical model to describe the
dynamical behavior of the pendulum and the corresponding experimentally obtained parameters.

The considered nonlinear pendulum is shown in Fig. 1. The right-hand side presents the experimental apparatus while
the left-hand side shows a schematic picture. Basically, the pendulum consists of an aluminum disc (1) with a lumped
mass (2) that is connected to a rotary motion sensor (4). This assembly is driven by a string-spring device (6) that is
attached to an electric motor (7) and also provides torsional stiffness to the system. A magnetic device (3) provides an
adjustable dissipation of energy. An actuator (5) provides the necessary perturbations to stabilize this system by properly
changing the string length.

Figure 1. Nonlinear pendulum: (a) physical model – (1) metallic disc; (2) lumped mass; (3) magnetic damping device;
(4) rotary motion sensor (PASCO CI-6538); (5) anchor mass; (6) string-spring device; (7) electric motor (PASCO ME-

8750). (b) Parameters and forces on metallic disc. (c) Parameters from driving device. (d) Experimental apparatus.

In order to obtain the equations of motion of the experimental nonlinear pendulum it is assumed that system dissipation
may be expressed by a combination of a linear viscous dissipation together with dry friction. Therefore, denoting the
angular position asφ, the following equation is obtained.

φ̈+
ζ

I
φ̇+

kd2

2I
φ+

µ sgn(φ̇)
I

+
mgD sin(φ)

2I
=
kd

2I

(√
a2 + b2 − 2ab cos(ωt)− (a− b)−∆l

)
(1)

whereω is the forcing frequency related to the motor rotation,a defines the position of the guide of the string with respect
to the motor,b is the length of the excitation crank of the motor,D is the diameter of the metallic disc andd is the diameter
of the driving pulley,m is the lumped mass,ζ represents the linear viscous damping coefficient, whileµ is the dry friction
coefficient;g is the gravity acceleration,I is the inertia of the disk-lumped mass,k is the string stiffness,∆l is the length
variation in the spring provided by the linear actuator (5) andsgn(x) is defined as

sgn(x) =
{
−1 if x < 0
+1 if x > 0 (2)

De Paula et al. (2006) show that this mathematical model is in close agreement with experimental data and, therefore,
it will be used for the control purposes.
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3. ADAPTATIVE FUZZY SLIDING MODE CONTROL

In order to write Eq. (1) in a more convenient form, it is rewritten as follows:

φ̈ = f(φ̇, φ, t) + hu+ p (3)

whereh = kd/2I, u = −∆l, f can be obtained from Eq. (1) and Eq. (3), and the added termp represents both unmodeled
dynamics and external disturbances.

Now, letS(t) be a sliding surface defined in the state space by the equations(ė, e) = 0, with the functions : R2 → R

satisfying

s(ė, e) = ė+ λe (4)

wheree = φ − φd is the tracking error,̇e is the first time derivative ofe, φd is the desired trajectory andλ is a strictly
positive constant.

The controlling of the system dynamics (3) is done by assuming a sliding mode based approach, defining a control
law composed by an equivalent controlû = ĥ−1(−f̂ − p̂+ φ̈d − λė) and a discontinuous term−K sgn(s):

u = ĥ−1(−f̂ − p̂+ φ̈d − λė)−K sgn(s) (5)

whereĥ, f̂ , andp̂ are estimates ofh, f andp, respectively, andK is a positive control gain.
Regarding the development of the control law, the following assumptions should be made:

Assumption 1 The functionf is unknown but bounded, i.e.|f̂ − f | ≤ F .

Assumption 2 The input gainh is unknown but positive and bounded, i.e.0 < hmin ≤ h ≤ hmax.

Assumption 3 The perturbationp(t) is time-varying and unknown but bounded, i.e.|p(t)| ≤ P.

Based on Assumption 2 and considering that the estimateĥ could be chosen according to the geometric meanĥ =√
hmaxhmin, the bounds ofh may be expressed asH−1 ≤ ĥ/h ≤ H, whereH =

√
hmax/hmin.

Under this condition, the gainK should be chosen according to

K ≥ Hĥ−1(η + |p̂|+ P + F) + (H− 1)|û| (6)

hereη is a strictly positive constant related to the reaching time.
At this point, it should be highlighted that the control law (5), together with (6), is sufficient to impose the sliding

condition

1
2
d

dt
s2 ≤ −η|s| (7)

and, consequently, the finite time convergence to the sliding surfaceS.
In order to obtain a good approximation to the disturbancep(t), the estimatêpwill be computed directly by an adaptive

fuzzy algorithm. The adopted fuzzy inference system was the zero order TSK (Takagi–Sugeno–Kang), whose rules can
be stated in an appropriate linguistic manner.

Considering that each rule defines a numerical value as outputP̂r, the final output̂p can be computed by a weighted
average:

p̂(s) =
∑N
r=1 wr · P̂r∑N
r=1 wr

(8)

or, similarly,

p̂(s) = P̂TΨ(s) (9)
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where,P̂ = [P̂1, P̂2, . . . , P̂N ]T is the vector containing the attributed valuesP̂r to each ruler, Ψ(s) = [ψ1(s), ψ2(s), . . . ,
ψN (s)]T is a vector with componentsψr(s) = wr/

∑N
r=1 wr andwr is the firing strength of each rule.

To ensure the best possible estimatep̂(s) to the disturbancep, the vector of adjustable parameters can be automatically
updated by the following adaptation law:

˙̂P = ϕsΨ(s) (10)

whereϕ is a strictly positive constant related to the adaptation rate.
It is important to emphasize that the chosen adaptation law, Eq. (10), must not only provide a good approximation

to disturbancep(t) but also assure the convergence of the state variables to the sliding surfaceS(t), for the purpose of
trajectory tracking. In this way, in order to evaluate the stability of the closed-loop system, let a positive-definite function
V be defined as

V (t) =
1
2
s2 +

1
2ϕ
δTδ (11)

whereδ = P̂ − P̂∗ andP̂∗ is the optimal parameter vector, associated to the optimal estimatep̂∗(s). Thus, the time
derivative ofV is

V̇ (t) = sṡ+ ϕ−1δTδ̇

= (φ̈− φ̈d + λė)s+ ϕ−1δTδ̇

= (f + hu+ p− φ̈d + λė)s+ ϕ−1δTδ̇

=
[
f + hĥ−1(−f̂ − p̂+ φ̈d − λė)− hK sgn(s) + p− φ̈d + λė

]
s+ ϕ−1δTδ̇

Defining a minimum approximation error asε = p̂∗(s) − p, recalling that̂u = ĥ−1(−f̂ − p̂ + φ̈d − λė) and noting

that δ̇ = ˙̂P, f = f̂ − (f̂ − f) andp = p̂− (p̂− p), V̇ becomes:

V̇ (t) = −
[
(f̂ − f) + ε+ (p̂− p̂∗) + ĥû− hû+ hK sgn(s)

]
s+ ϕ−1δT ˙̂P

= −
[
(f̂ − f) + ε+ δTΨ(s) + ĥû− hû+ hK sgn(s)

]
s+ ϕ−1δT ˙̂P

= −
[
(f̂ − f) + ε+ ĥû− hû+ hK sgn(s)

]
s+ ϕ−1δT

[ ˙̂P− ϕsΨ(s)
]

By applying the adaptation law, Eq (10), to˙̂P, V̇ (t) becomes:

V̇ (t) = −
[
(f̂ − f) + ε+ ĥû− hû+ hK sgn(s)

]
s (12)

Furthermore, considering assumptions 1–3, definingK according to (6) and verifying that|ε| = |p̂∗−p| ≤ |p̂∗|+|p| ≤
|p̂|+ P, it follows

V̇ (t) ≤ −η|s| (13)

which impliesV (t) ≤ V (0) and thats andδ are bounded. Integrating both sides of (13) shows that

lim
t→∞

∫ t

0

η|s| dτ ≤ lim
t→∞

[V (0)− V (t)] ≤ V (0) <∞

Now Barbalat’s lemma is evoked establishing thats → 0 ast → ∞, which ensures the convergence of the states to
the sliding surfaceS and to the desired trajectory.

In spite of the demonstrated properties of the controller, the presence of a discontinuous term in the control law leads
to the well known chattering effect. In order to avoid these undesirable high-frequency oscillations of the controlled
variable, the sign function can be replace by a saturation function (Slotine and Li, 1991), defined as:

sat(x) =
{

sgn(x) if |x| ≥ 1
x if |x| < 1 (14)
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This substitution smoothes out the control discontinuity by introducing a thin boundary layer,Sε(t), in the neighbor-
hood of the switching surface:

Sε =
{

(φ̇, φ) ∈ R2
∣∣ |s(ė, e)| ≤ ε}

whereε is a strictly positive constant that represents the boundary layer thickness.
Thus, the resulting control law can be stated as follows

u = ĥ−1(−f̂ − p̂+ φ̈d − λė)−K sat
(s
ε

)
(15)

The adoption of (15) can minimize or, when desired, even completely eliminate chattering, but turnsperfect tracking
into atracking with guaranteed precisionproblem, which actually means that a steady-state error will always remain.

4. NUMERICAL SIMULATIONS

The numerical simulations are carried out considering the fourth order Runge-Kutta method. The model parameters
are chosen according to De Paula et al. (2006):I = 1.738 × 10−4 kg m2; m = 1.47 × 10−2 kg; k = 2.47 N/m;
ζ = 2.368 × 10−5 kg m2/s; µ = 1.272 × 10−4 N m; a = 1.6e × 10−1 m; b = 6.0 × 10−2 m; d = 4.8 × 10−2 m;
D = 9.5× 10−2 m andω = 5.61 rad/s.

In order to demonstrate the robustness of the adopted control scheme against both structured (or parametric) uncer-
tainties and unstructured uncertainties (or unmodeled dynamics), it is assumed that the system dissipation is not exactly
known within controller’s design. On this basis, it is assumed that system uncertaints is related to dissipation. Therefore,
the viscous damping coefficient is estimate asζ̂ = 2.0 × 10−5 kg m2/s and the dry friction is not taken into account,i.e.
µ̂ = 0. Regarding the other controller parameters, the following values are chosen:λ = 10.0; η = 0.5; ϕ = 2.5; ε = 1.0
andF = 1.05.

Concerning the fuzzy system, triangular and trapezoidal membership functions are adopted forSr, with the central
values defined asC = {−5.0 ; −1.0 ; −0.5 ; 0.0 ; 0.5 ; 1.0 ; 5.0}×10−3 (see Fig. 2). It is also important to emphasize that
the vector of adjustable parameters is initialized with zero values,D̂ = 0, and updated at each iteration step according to
the adaptation law, Eq. (10).

10
−3

x s−0.5−1.0−5.0 5.01.00.5

w

Figure 2. Adopted fuzzy membership functions.

In order to evaluate the control system performance, different UPOs are identified using the close return method (De
Paula et al., 2006). As a control rule, three different UPOs are chosen to be stabilized: a period-1 UPO, a period-2 UPO
and a period-4 UPO. The obtained results are presented from Fig. 3 to Fig. 5.

As observed in Fig. 3, Fig. 4 and Fig. 5, even in the presence of modeling inaccuracies, the adaptive fuzzy sliding mode
controller (AFSMC) is capable to provide the trajectory tracking with a small associated error. It should be emphasized
that the control actionu represents the length variation in the string and only tiny variations are required to provide such
different dynamic behaviors, which actually allows a great flexibility for the controlled nonlinear system.

It can be also verified that the proposed control law provides a smaller tracking error when compared with the con-
ventional sliding mode controller (SMC), Fig. 3(d), Fig. 4(d) and Fig. 5(d). The improved performance of AFSMC over
SMC is due to its ability to recognize and compensate the modeling imprecisions. By considering simulation purposes,
the AFSMC can be easily converted to the classical SMC by setting the adaptation rate to zero,ϕ = 0.

The idea to control UPOs is interesting since these orbits are related to system dynamics. Therefore, it is interesting
to perform a comparative analysis of the control action required to stabilize a generic orbit and an UPO. Basically, two
different situations are treated. In the first case, Fig. 6(a) and Fig. 6(c), a generic orbit[φ̇d, φd] = [4.70π cos(2πt), 1.0 +
2.35 sin(2πt)] is considered. A second case, on the other hand, stabilizes a period-1 UPO, Fig. 6(b) and Fig. 6(d).
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(a) Phase Space. (b) Control action.

(c) Angular displacement.
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(d) Tracking error.

Figure 3. Tracking of a Period-1 UPO.

Although both orbits are similar, it should be highlighted that the controller requires less effort to stabilize an UPO. This
is an essential aspect to be explored in terms of chaos control.

5. CONCLUSIONS

The present contribution considers the orbit stabilization employing an adaptive fuzzy sliding mode controller. The
stability and convergence properties of the closed-loop system is analytically proven using Lyapunov stability theory and
Barbalat’s lemma. As an application of the general formulation, numerical simulations of a nonlinear pendulum with
chaotic response is of concern. The control system performance is investigated showing the tracking of a generic orbit as
well as for UPO stabilization. The improved performance over the conventional sliding mode controller is demonstrated.
It is also shown that the controller needs less effort to stabilize an UPO than a generic orbit.
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Figure 5. Tracking of a Period-4 UPO.
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(a) (φ̇d, φd) = (4.70π cos(2πt), 1.0 + 2.35 sin(2πt)). (b) Period-1 UPO.

(c) Control action for generic orbit stabilization.
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(d) Control action for period-1 UPO stabilization.

Figure 6. Comparative analysis of the control action required to stabilize a generic orbit and an UPO.


