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Abstract. Almost all biomechanical systems for voice production have been modeled as deterministic. However, models of
voice production are better modeled as stochastic processes, taking into account that their parameters are uncertain. The
parametric approach requires the adoption of random variables to represent the uncertain parameters of voice production
for improving the predictability of the model. For each random variable, a probability density function has to be con-
structed following a chosen strategy. In this paper, some parameters of a biomechanical model for voice production are
considered as uncertain and their density probability functions are modeled using the Maximum Entropy Principle. The
construction of the probability distribution is very sensitive to the information used when the Maximum Entropy Principle
is applied. The biomechanical model discussed here can represent the voice production for men and women, according to
the parameters used. The main objective of this work is to compare the voice production process of men and women taking
into account the uncertainties of the process. This comparison is based on a probabilistic analysis of the fundamental
frequency of the voice signal obtained for men and women.
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1. INTRODUCTION

Voice production (phonation) has been studied by several researchers, and for a number of different reasons such as:
to obtain synthesis of voiced sounds (Ishizaka and Flanagan, 1972) (Koizumi et al, 1987) (Cataldo, 2006), to simulate
pathological vocal-fold vibrations (Ishizaka, 1976) (Zhang, 2005), and to discuss nonlinearities related to the process
(Steinecke, 1995) (Herzel, 1995) (Lucero, 1999). Phonation is one of the laryngeal functions. It results from the vibration
of the vocal folds, located in the larynx, which alternately snap together and apart, colliding one with the other, in a
periodic (or quasi-periodic) motion.

The laryngeal function is highly similar within the group of voiced sounds produced. Vocal-fold vibration differs
little across vowels, and their distinctiveness is determined by the shaping of the vocal tract. The vocal folds are set
into vibration by the combined effect of the subglottal pressure, the viscoelastic properties of the vocal folds, and the
Bernouilli effect, according to the accepted myoelastic theory of voice production proposed by van den Berg (1968) and
Titze (1980). The vocal tract acts as a filter which transforms the primary signal (the glottal pulses) into the final voiced
sounds.

To characterize the vocal folds vibration, the two-mass model proposed by Ishizaka and Flanagan (1972) has been
widely used. In order to model the voice production, besides a vocal-fold model, it is also necessary a model for the vocal
tract, usually represented by an acoustic tube. Predictions from the model may be improved with better measures of its
parameters. However, since they are related to physiological parameters, accurate measures are, in general, difficult to be
done (see, e.g., a discussion of the shape of the vocal tract (Fant, 1960) and technological means to find an approximation
for this shape (Titze, 1996) (Takemoto, 2005).

Here, the human voice production system is considered to be non deterministic. The vocal-fold model used has a lot
of parameters and, in principle, all of them could be considered as random. However, doing so would be computationally
costly and will complicate the interpretation of the physics of the problem. Therefore, we will select only a few important
parameters to be random. The choice will be later validated by the obtained results. Besides the choice of the random
parameters, the other key point to make a probabilistic model is the association of a probabilistic distribution to these
parameters. Of course this could be done through a careful statistics from experimental data. Here this path is not followed
and another strategy is used. The probability distributions are characterized using the Maximum Entropy Principle and
taking into account some usable information on those parameters. The probability distribution constructed is very sensitive
to the choice of the usable information. This is shown through an example. This technique is very powerful, since the
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scarce information used to construct the probability density function is enough to characterize the radiated output pressure
and also to measure the robustness of the model.

2. MEAN MODEL

In general, a mathematical model has as objective to predict the output of the real system for a given input. The mean
model is the corresponding deterministic mathematical model. The input of the mean model does not exactly represent
the input of the real system and, also, uncertainties on the parameters of the mean model have to be taken into account to
improve its predictability. The error between the output predicted calculated with the mean model and the response of the
real system should be minimized in order to improve its predictability. In general, due to data uncertainties, this error is
not sufficiently small.

The mean model adopted here is showed in Fig. 1 (Ishizaka and Flanagan, 1972). Each vocal fold is represented by
two (nonlinear) mass-damper-spring systems, coupled through a (linear) spring (kc) and the vocal tract is represented by
a standard two-tube configuration for vowel /a/.

Figure 1. Model used for describing the voice production process.

The dynamics of the system can be written in a simplified form, by Eq.(1) and Eq.(2):

ψ1(w)u̇g + ψ2(w)|ug|ug + ψ3(w)ug +
1
c̃1

∫ t

0

(ug(τ)− u1(τ))dτ − y = 0 (1)

[M ]ẅ + [C]ẇ + [K]w + h(w, ẇ, ug, u̇g) = 0 (2)

where w(t) = (x1(t), x2(t), u1(t), u2(t), ur(t))
t
. The functions x1 and x2 are the displacements of the masses, u1 and

u2 describe the air volume flow through the (two) tubes that model the vocal tract and ur is the air volume flow through
the mouth. The function pr gives the output radiated pressure and it is given by pr(t) = ur(t)rr, in which rr = 128ρvc

9π3y2
2

, ρ

is the air density, vc is the sound velocity, and y2 is the radius of the second tube. The subglottal pressure is denoted by y
and the function ug describes the glottal signal.

The functions ψ1, ψ2, ψ3, h, and also the matrices [M ], [C], [K] are described in the appendix.
Equation (1) is the coupling equation between the vocal tract and the vocal folds and Eq. (2) gives the dynamics of

the airflow, from the lungs up to the mouth.
In order to solve the system (Eq. (1) and Eq. (2)); that is, find ug and w given y, a centered finite difference scheme is

used for Eq. (1) and an unconditionnally stable Newmark scheme is used for Eq. (2). This method is proposed because
there is a non-linear equation to solve and such an implicit scheme, in general, is more robust to solve stochastic nonlinear
elastodynamical systems. The results obtained with this strategy were satisfactory.
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For a probabilistic analysis of the fundamental frequency of men and women, taking into account studies discussed by
Lucero (1999) and the randomness of some parameters involved in the model considered, it will be necessary to calculate
the fundamental frequency, for each realization. Let T be the period of the function ug and let f0 be the fundamental
frequency of the voice signal. The fundamental frequency of the voice signal is also the fundamental frequency of the
glottal signal ug. Then, f0 = 1/T .

3. STOCHASTIC MODEL

3.1 Stochastic equations

Some parameters will be considered as uncertain and random variables will be associated to these parameters. As
the objective is to perform a probabilistic analysis of the fundamental frequency, the main parameters responsible for the
changing of the fundamental frequency were chosen. These parameters are the tension parameter, subglottal pressure,
and neutral glottal area.

The first parameter, that describes the muscular action to produce the voice, influences several other parameters of the
model and it is used an strategy to reduce them to just one dimension. This parameter is called tension parameter and it
is denoted by q. So, m1, k1, m2, k2 and kc are written as m1 = m̂1/q, k1 = q k̂1, m2 = m̂2/q, k2 = q k̂2 and kc = q k̂c,
in which m̂1, k̂1, m̂2, k̂2 and k̂c are fixed values. This is done similarly as Ishizaka and Flanagan (1972). The random
variable associated to this parameter will be denoted by Q.

The second parameter is the subglottal pressure, denoted by y, and the random variable associated will be denoted by
Y .

The third parameter is the neutral glottal area, denoted by ag0, and the associated random variable will be denoted by
Ag0.

The corresponding stochastic equations will be written, from Eq. (1) and Eq. (2), substituting the parameters q, y and
ag0, by the corresponding random variables Q, Y and Ag0, respectively.

Figure 2 shows a block diagram describing the complete system and the corresponding two subsystems (vocal folds
subsystem and vocal tract subsystem), considering that all parameters are deterministic. Figure 3 shows the block diagram
of the complete system, but emphasizing the random variables related to the parameters chosen as uncertain.

Figure 2. Block diagram of the deterministic complete system.

Figure 3. Block diagram of the complete system, emphasizing the three random variables related to the uncertain param-
eters.

To write the equations of the dynamics of the corresponding stochastic system:

(1) the matrices [M ], [C] and [K] will be substituted by random matrices [M], [C], and [K].

(2) the functions w, h, ug and u1 will not be deterministic anymore. They are stochastic processes and will be substituted
by W, H, Ug and U1, respectively.
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Then, the corresponding stochastic equations are given by Eqs. (3) and (4).

ψ1(W)U̇g + ψ2(W)|Ug|Ug + ψ3(W)Ug +
1
c̃1

∫ t

0

(Ug(τ)− U1(τ))dτ − Y = 0 (3)

[M]Ẅ + [C]Ẇ + [K]W + H(W,Ẇ, Ug, U̇g) = 0 . (4)

The random variable Y appears explicitly in Eqs. 3 and 4. This does not happen with the random variables Ag0 and
Q, which will appear in the entries of the random matrices [M], [C] and [K] and in the definition of the function H.

The next step is, then, to construct the density probability functions of the random variables Q, Y and Ag0. The
strategy used is based on the Maximum Entropy Principle and relies in some usable information, necessary to solve
a constrained optimization problem. The resulting density is very sensitive to the information used, as will be shown
thorough an example. First, a brief review of the Maximum Entropy Principle will be presented and after the probabilistic
models are constructed.

3.2 The Maximum Entropy Principle

This principle consists in maximizing the entropy subjected to constraints defined by the usable information. In
the context of information theory, Shannon (1948) introduced an entropy as the measure of uncertainty for probability
distributions. In the context of Statistical Mechanics, Jaynes (1957a, 1957b) used this measure to define the Maximum
Entropy Principle for the construction of a probability distribution.

This Principle permits to construct the probability density function pX of a random variable X from a set of informa-
tion, called usable information.

If X is a continuum random variable, the Entropy S(pX) of its probability density function pX is defined by Eq. (5).

S(pX) = −
∫

R
pX(x) `n(pX(x)) dx . (5)

According to the Maximum Entropy Principle, the probability density function pX to be constructed is the one with
the largest uncertainty, measured by the entropy, among the sets of all of the probability density functions that verify the
constraints defined by the usable information.

Let pX be the probability density function of the random variable X with values inR. We suppose that pX is unknown,
but its support s ⊂ R is known and also the m real numbers φ1, . . . , φm such that

E{gj(X)} =
∫

R
gj(x)pX(x)dx = φj ∈ R , j = 1, . . . ,m (6)

with gj a real measurable function.
The m equations given by Eq. (6) define what we call the usable information to construct the probability density

function pX , knowing the functions g1, . . . , gm and the corresponding values of φ1, . . . , φm.
Let C be the space of the functions pX , from R to R+, with the same support s ⊂ R, verifying the Eqs. 7 and 8.

∫

R
pX(x)dx = 1 (7)

∫

R
gj(x)pX(x)dx = φj (8)

To construct pX , we will maximize the entropy S(pX) under the m + 1 constraints defined by Eqs. (7) and (8); that
is, we will solve the optimization problem given by Eq. (9).

maxpX∈CS(pX) . (9)

We introduce 1+m Lagrange’s multipliers (λ0−1) ∈ R, λ1 ∈ R, . . . , λm ∈ R, associated with the 1+m constraints.
The corresponding Lagrangian L is given by Eq. (10):
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L(pX) = S(pX)− (λ0 − 1)
{∫

R
pX(x)dx− 1

}
−

m∑

j=1

(
λj

∫

R
gj(x)pX(x)dx− φj

)
. (10)

From the Calculus of Variations, we obtain that pX is given by

pX(x) = 1B(x)exp


−λ0 −

m∑

j=1

λj


 gj(x) (11)

in which 1B(x) = 1 if x ∈ B and 0 if x /∈ B. It can be also proved that this is the only extreme and it is a maximum.
We have then to calculate the 1 + m multipliers λ0, λ1, . . . , λm ∈ R using the 1 + m equations given by Eqs. (7)

and (8).
Let λ, φ and g be vectors given by λ = (λ0, λ1, . . . , λm) , λj ∈ R, φ = (1, φ1, . . . , φm) and g = (1, g1, . . . , gm).
Then, we must find λ that minimizes the function ∆ defined by

∆(λ) = λ0 + λ1φ1 + . . . + λmφm +
∫

s

exp(−λ0 − λ1g1(x)− . . .− λmgm(x))dx . (12)

It can be proved that ∆ is a strictly convex function and consequently there is only one extreme. It can be then proved
that it is a minimum. Consequently, there is only one λ that minimizes ∆. In general, the usable information used refers
to the range of the density probability functions, the moments one expects are finite, the possibility to solve the inverse
problem, etc. Also one tries to solve the optimization problem analytically, but of course there is no need of an analytical
solution and one could as well work numerically.

In the following, we will apply these results to find density probability functions corresponding to the chosen uncertain
parameters.

3.3 Probability model of the uncertain parameters

In order to construct a coherent probability model, only the available information on the parameters is used and the
Maximum Entropy Principle is applied.

With the nature of the available information used for the probabilistic models, the application of the Maximum Entropy
Principle yields independent probability density functions for Ag0, Y and Q (Soize, 2000, 2001).

3.3.1 Tension parameter

The tension parameter is modeled by the random variable Q. The usable information are: (i) Its support is ]0, +∞[,
(ii) its mean value is E{Q} = Y s, (iii) E{1/Q2} < +∞. Information (iii) is due to M1 = m̂1/Q is a second-order
random variable. Then, it is necessary that E{M2

1 } < +∞ yielding E{1/Q2} < +∞.
Applying the Maximum Entropy Principle, the probability density function is given by:

pQ(q) = 1]0,+∞[(q)
1
Q

(
1
δ2
Q

) 1
δ2
Q 1

Γ
(
1/δ2

Q

)
(

q

Q

) 1
δ2
Q

−1

exp

(
− q

δ2
QQ

)
, (13)

where the positive parameter δQ = σQ/Q is the dispersion coefficient, satisfying δQ < 1/
√

2, and σQ is the standard
deviation of Q.

3.3.2 Subglottal pressure

The subglottal pressure is modeled by the random variable Y . The usable information are: (i) Its support is ]0, +∞[,
(ii) its mean value is E{Y } = Y , (iii) The second-order moment of its inverse is finite E{1/Y 2} < +∞. Information (3)
is used because 0, and values near to it, should be repulsive values for Y , since there is a minimum pressure for causing
phonation. The probability density function, applying the Maximum Entropy Principle, will be given by:

pY (y) = 1]0,+∞[(y)
1
Y

(
1
δ2
Y

) 1
δ2
Y 1

Γ (1/δ2
Y )

(
y

Y

) 1
δ2
Y

−1

exp

(
− y

δ2
Y Y

)
, (14)

where the positive parameter δY = σY /Y is the dispersion coefficient, satisfying δY < 1/
√

2, and σY is the standard
deviation of Y .
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3.3.3 Neutral glottal area

We will construct two models for the neutral glottal area. Both models are reasonable and the decision which one is
best to describe the voice production process must be taken from experimental results.

model I: There is no information about the dispersion of Ag0 : The neutral glottal area is modeled by the random vari-
able Ag0. The usable information are: (i) Its support is ]0, +∞[ and (ii) its mean value is E{Ag0} = Ag0. Applying
the Maximum Entropy Principle, the probability density function yields:

pAg0 = 1]0,+∞[ag0
1

Ag0

e−ag0/Ag0 . (15)

In the model I, the information used is such that the random variable is not of second-order. However, it is reasonable
to think that Ag0 is a second-order random variable. It is, then, interesting to see the consequences of the imposition
that Ag0 is a second-order random variable. This information will be added and a new probability density function
will be constructed. It will be calle model II.

model II: Adding a new usable information to Ag0: it is a second-order random variable

Now, the usable information for constructing the probability density function of Ag0 are: (i) Its support is ]0, +∞[,
(ii) its mean value is E{Ag0} = Ag0 and (iii) it is a second-order random variable; it means, E{A2

g0} < +∞.
In this case, it will not be obtained a known expression of the probability density function as before (exponential and

gamma). The probability density function of Ag0 will be given by Eq.(11) (m = 2), rewritten by Eq.(16)

pAg0(ag0) = 1]0,+∞[e
−λ0−λ1x−λ2x2

(16)

where λ0, λ1 and λ2 are the values that minimize the function ∆, given by Eq.(17):

∆ = λ0 + λ1Ag0 + λ2c (17)

with E{X2} = c , c < +∞.
It will be created a coefficient of dispersion δAg0 =

σAg0
Ag0

, where σAg0 is the standard deviation of Ag0. It can be

proved that c = Ag0
2
(
1 + δ2

Ag0

)
.

Figure 4 shows the probability density functions obtained for the two models.
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Figure 4. Probability density functions constructed for model I (top) and for model II (bottom).

4. SIMULATION

The corresponding stochastic solver is based on a Monte Carlo numerical simulation. Realizations of the random
variables Q, Y and Ag0 are constructed according to the their probability density functions. For each independent real-
ization Ag0(θ), Y (θ) and Q(θ), a realization of the random fundamental frequency F0(θ) is calculated in the same way
as described for the mean model.
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The convergence analysis with respect to n is carried out studying the convergence of the estimated second-order
moment of F0 defined by

Conv(n) =
1
n

n∑

j=1

F0(θj)2. (18)

This convergence analysis is performed for different values of δY , δQ and δAg0 and for n ≥ 500, the convergence is
always reached. Then, n = 500 was taken for all further estimations.

The confidence region associated with a probability level Pc is constructed using quantiles (Serfling, 1980). Let
FF0(f0) = P{F0 ≤ f0} be the cumulative distribution function of random variable F0. For 0 < p < 1, the pth quantile
of FF0 is defined as ζ(p) = Inf{f : FF0(f) ≥ p}. Then, the upper envelope, f+, and the lower envelope, f−, of
the confidence interval are defined by f+ = ζ((1 + Pc)/2) and f− = ζ((1 − Pc)/2) . Let f1 = F0(θ1), . . . , fn =
F0(θn) be n independent realizations of random variable F0. Let f̃1 < . . . < f̃n be the order statistics associated with
f1, . . . , fn. Therefore, we have the following estimation: f+ = f̃j+ with j+ = fix(n(1 + Pc)/2) and f− = f̃j− with
j− = fix(n(1− Pc)/2) in which fix(z) is the integer part of the real number z.

The values used for simulations to reproduce the signals of voice produced by men and women are the same ones
discussed by Lucero (2005) and reproduced below.

For male configuration: m̂1 = 0.125 g, m̂2 = 0.125 g, k̂c = 25 N/m, k̂1 = 80 N/m, k̂2 = 8 N/m, ξ1 = 0.1, ξ2 = 0.6,
`g = 1.4cm, d1 = 0.25 cm, d2 = 0.05 cm and for the vocal tract model (Ishizaka and Flanagan, 1972) (Goldstein, 1980):
S1 = 1 cm2, S2 = 7 cm2, L1 = 8.9 cm, L2 = 8.1 cm.

For female configuration: m̂1 = 0.0456 g, m̂2 = 0.0091 g, k̂c = 17.85 N/m, k̂1 = 57.14 N/m, k̂2 = 5.71 N/m,
ξ1 = 0.1, ξ2 = 0.6, `g = 1cm, d1 = 0.179 cm, d2 = 0.036 cm and for the vocal tract model (Ishizaka and Flanagan,
1972) (Goldstein, 1980): S1 = 0.688 cm2, S2 = 4.816 cm2, L1 = 6.3 cm, L2 = 7.8 cm.

The mean values considered for the random variables are: Y = 800 Pa, Q = 1 and Ag0 = 0.05 cm2.
The estimation of the probability density function pF0 of random variable F0 is constructed as follows. Let M be the

number of intervals. Let Ij = [νj , νj + ∆ν[ for j = 1, . . . , M with ν1 = f̃1 and ∆ν = (f̃n − f̃1)/M . An estimation p̂F0

of the probability density function of F0 is given by

p̂F0(f0) =
M∑

j=1

1Ij (f0)
Nj

n∆ν
. (19)

Figure 5 shows the probability density function taking into account 500 realizations of the random variables Q, Y and
model I for Ag0. It was used the value 0.05 for the coefficient of dispersion δQ and also for δY . When sounds are not
produced, the fundamental frequency is set to 0, and these values are not shown in the plots.
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Figure 5. Probability density functions of the fundamental frequency for men (top) and women (bottom).

It can be noted that the shape of the probability density functions are completely different, although the coefficients of
the dispersion of the parameters have the same value.

In addition to this, confidence intervals of the fundamental frequency were constructed and showed in Fig. 6 for
different levels of dispersion of Q. Only this coefficient of dispersion of Q was varied from δQ = 0.01 up to δQ = 0.4.
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The coefficient of dispersion of Y was considered fixed at 0.01. As the model used for Ag0 was model I, there is no
coefficient of dispersion associated to it.
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Figure 6. Confidence interval for men (top) and women (bottom) considering subglottal pressure deterministic and δQ

varying.

It is important to say that the values used for constructing the two plots are discrete. However, to construct the
confidence interval, the values were fitted (polynomial fitness).

It can be noted that the confidence intervals have the same shape (for men and women), although the probability
density functions have presented different shapes.

The results obtained for the probability density functions did not seem good when model I is used. The model II for
Ag0 is then applied and the probability density function of Ag0 constructed.

Figure 7 shows the density probability functions taking into account 500 realizations of the random variables Q, Y
and Ag0. The same values for the coefficients of dispersion were taken into account: δAg0 = δQ = δY = 0.05.
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Figure 7. Probability density functions of the fundamental frequency with model II for men (top) and women (bottom)
.

Now, with the additional requirement that Ag0 is of second order, it can be seen that the shapes of the probability
density functions are similar. One sees that the results are very sensitive to the information used to derive the probability
distribution. Hence, one must be careful not to add information that are not really sure. In a future work, that is being
prepared, it will be shown how to update the results obtained from the available information and the Maximum Entropy
Principle using information from experiments and techniques from Bayesian Statistics.

5. CONCLUSIONS

A parametric probabilistic approach is proposed to take into account uncertainties present on a biomechanical model
for the production of voiced sounds. This approach allows a comparison between the systems of voice production of
men and women. The novelty of this work is mainly to consider the voice production as a stochastic process and to
use a strategy to construct probability density functions to the random variables associated to the uncertain parameters.
The strategy used is based on the Maximum Entropy Principle, which is especially powerful because experimental data
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sets available are not sufficiently large. The results obtained with the first information about Ag0 (model I) did not seem
satisfactory, and new information was added to fit a better model. This study shows a way to discuss uncertaintin models
of voice production and mainly to show that the behavior of the same model, when men and women are considered, should
be analyzed in different ways.

6. APPENDIX

ψ1(w) = ( ρd1
ag0+2`gx1

+ ρd2
ag0+2`gx2

+ ˜̀
1)

ψ2(w) = ( 0.19ρ
ag0+2`gx1

+ 2`gx1) + ρ
(ag0+2`gx2)2

[
0.5− ag0+2`gx2

a1

(
1− ag0+2`gx2

a1

)]

ψ3(w) = (12µ`g
d1

(ag0+2`gx1)3
+ 12`2g

d2
(ag0+2`gx2)3

+ r1)

[M ] =




m1 0 0 0 0
0 m2 0 0 0
0 0 ˜̀

1 + ˜̀
2 0 0

0 0 0 ˜̀
2 + ˜̀

r −˜̀
r

0 0 0 −˜̀
r

˜̀
r




, [C] =




c1 0 0 0 0
0 c2 0 0 0
0 0 r1 + r2 0 0
0 0 0 r2 0
0 0 0 0 rr




,

[K] =




k1 + kc −kc 0 0 0
−kc k2 + kc 0 0 0
0 0 1

c̃1
+ 1

c̃2
− 1

c̃2
0

0 0 − 1
c̃2

1
c̃2

0
0 0 0 0 0




, h(w, ẇ, ug, u̇g) =




s1(x1) + t1(x1)ẋ1 − f1(x1, ug, u̇g)
s2(x2) + t2(x2)ẋ2 − f2(x1, x2, ug, u̇g)

− 1
c̃1

ug

0
0




,

where
˜̀
n = ρ`n

2πy2
n

, ˜̀
r = 8ρ

3π2yn
, rn = 2

yn

√
ρµω

2 , ω =
√

k1
m1

, an = πy2
n, c̃n = `nπy2

n

ρv2
c

, `n is the length of the n th tube, yn

is the radius of the n th tube, and µ is the shear viscosity coefficient.

sα(wα) =





kαηkαx3
α , xα > −ag0

2`g

kαηkαx3
α + 3kα

{(
wα + ag0

2`g

)
+ ηhα

(
wα + ag0

2`g

)3
}

, xα ≤ −ag0
2`g

, α = 1, 2.

tα(xα) =

{
0 , xα > −ag0

2`g

2ξ
√

m1k1 , xα ≤ −ag0
2`g

, α = 1, 2.

f1(x1, ug, u̇g) =
{

`gd1pm1(x1, ug, u̇g) , x1 > −ag0
2`g

0 , otherwise

f2(x1, x2, ug, u̇g) =





`gd2pm2(w1, w2, ug, u̇g) , x1 > −ag0
2`g

and x2 > −ag0
2`g

`gd2ps , x1 > −ag0
2`g

and x2 ≤ −ag0
2`g

0 , otherwise

pm1(x1, ug, u̇g) = ps − 1.37ρ
2

(
ug

ag0+2`gx1

)2

− 1
2

(
12µ`g

d1
(ag0+2`gx1)3

+ ρd1
ag0+2`gx1

)
u̇g

pm2(x1, x2, ug, u̇g) = pm1 − ∗
∗ = 1

2

{
(12µ`g

d1
(ag0+2`gx1)3

+ 12`2g
d2

(ag0+2`gx2)3
)ug + ( ρd1

ag0+2`gx1
+ ρd2

ag0+2`gx2
)u̇g

}
−ρ

2u2
g

(
1

(ag0+2`gx2)2
− 1

(ag0+2`gx1)2

)
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