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Abstract. In the present work we investigate the effects of interstitial fuid flow and interstitial fluid drainage on the 
spatio-temporal response of soft tissue strain. Our motivation comes from the ability to measure in vivo strain 
distributions in soft tissue via elastography, and the possibility of using such techniques to investigate soft tissue fluid 
flow. Our study is based upon a mathematical model for soft tissue mechanics from the literature. It is a simple 
generalization of biphasic theory that includes not only the coupling between the tissue fluid and solid phases, but also 
the fluid exchange between the interstitium and the local microvasculature. As in the biphasic theory, it follows from 
the assumption that both solid and fluid phases are incompressible that dilatation can occour only when the 
corresponding volume of fluid percolates or drains from the interstitial compartment. We solve the mathematical 
equations in two dimensions by the finite element method (FEM). Realistic input tissue properties from the literature 
are used in conjunction with FEM modelling to conduct several computational experiments relevant to quasistatic 
imaging for the characterization of fluid flow in solid tumors. The results of these simulations lead to the following 
conclusions: (i) different hypothetical flow mechanisms lead to different spatio-temporal patterns of stress/strain 
relaxation; (ii) representative tissue properties show fluid drainage into the local microvasculature to be the dominant 
flow-related stress/strain relaxation mechanism; (iii) the relaxation time of solid tumours due to fluid drainage into the 
microvasculature is on the order of 5 - 10 s; (iv) under realistic applied pressure magnitudes, the magnitude of the 
strain relaxation can be as high as approximately 0.4% strain (4000 microstrains), which is well within the range of 
strains measurable by elastography. 
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1. INTRODUCTION  
 

Elastography refers to a collection of imaging techniques that allow mechanical strain distributions to be imaged and 
noninvasively quantified  in vivo. 

Soft tissue is widely recognized as having both fluid and solid phases which can move independently of each other.   
Furthermore, the fluid exists within several ``compartments" of the soft tissue, notably, the vasculature (including both 
the hemal and lymphatic vessels) and the extravascular space.  Of course, due to the hydraulic conductivity of the 
microvessel walls in both vascular networks, fluid is often exchanged between these compartments.  It is recognized 
that fluid flow leads to a stress relaxation at fixed strain (or conversely, a strain relaxation at fixed stress). It is 
reasonable to conjecture then, that by measuring the spatio-temporal patterns of strain in a strain-relaxation type of 
experiment, the effects of fluid flow can be visualized and measured. 

The linear ``biphasic theory" (Mow et al., (1980)), which can be regarded as a special case of Biot poroelasticity; 
the special case being that of having two incompressible phases, has been very successful at modeling the fluid-elastic 
coupling in cartilage.  Cartilage tends to be avascular, however, and so fluid resides only in the ``extravascular 
compartment".  

A different model for the mechanics of vascularized soft tissue, which includes the effects of fluid flow and the 
possibility of exchange between fluid compartments was proposed by R. Skalak, RK Jain, and coworkers in Netti et al. 
(1997).  The model was originally developed in a rather general context to capture effects of fluid-elastic coupling in 
soft tissues, but was then applied to describe perfusion and drug delivery in solid tumors. 

Our motivation for this work stems from the question: Can techniques from elastography be used to image and 
quantify interstitial fluid flow in soft tissues from spatio-temporal patterns of elastic strain?  To answer this, we use the 
mathematical model of Netti et al. (1997) in conjunction with finite element modeling to predict the effects of fluid 
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flow on the spatio-temporal patterns of soft-tissue elastic strain under a variety of physiological conditions.  The 
magnitude of the strain effects and their time scales dictate the measurability of the effects of fluid flow. 

Simulations relevant to a quasistatic elasticity imaging for the characterization of fluid flow in solid tumors are 
emphasized here. In particular, we show that solid tumors tend to relax much faster than healthy tissue due to its high 
filtration coefficient (angiogenesis), which is recognized to be one of the most important features of tumors regarding 
diagnostics and prognostics.  

In the following section, we describe the used mathematical model. We then describe two computational simulations 
designed to investigate the question raised above. This is followed by Discussion and Conclusions. 

 
2. MATHEMATICAL MODEL 

 
A complete derivation of the mathematical model can be found in Netti et al. (1997) and in Leiderman et al. (2006). 

A summary is given in the following. Figure 1 represents schematically a portion of soft tissue. Its boundary and 
domain are denoted by Г and Ω, respectively.  The interstitial boundary, Г, is comprised of three parts:  the outer 
boundary Гo, the interface with the hemal capillaries Гc, and the interface with the lymphatic capillaries ГL. Due to the 
hydraulic conductivity of the microvessel walls, fluid is often exchanged at Гc and ГL.  This fluid exchange is governed by 
the Starling’s law, which states that the flaw rate across a membrane (the capillary wall in the present case) is 
proportional to the pressure jump across the membrane. We regard the interstitial compartment as a linear biphasic 
solid-fluid mixture, where both fluid and solid phases can move independently of each other.  The two phases are 
treated as intrinsically incompressible. 

 

 
 

Figure 1: A portion of soft tissue: The interstitial compartment is itself a biphasic solid-fluid mixture, where both 
fluid and solid phases can move independently of each other. 

 
The assumptions that go into the model are linear isotropic constitutive equations, small strains, small vascular 

space, Starling’s law for (transient) fluid transport across the vessel wall, Darcy’s law for fluid flow through the 
interstitial compartment, and Hooke's law for the elastic response.  We further assume the deformation takes place 
slowly enough that inertia can be neglected. Under these conditions, the solid displacement vector u and interstitial fluid 
pressure p are related by: 

 
[ ]p pκ χ∇ ⋅ −∇ ∇ + =u 0

) )] 0

                                                                                                                                        (1) 
 

[ ( ( Tp λ µ∇⋅ − + ∇ ⋅ + ∇ + ∇ =I uI u u                                                                                                            (2) 
 
Equation (1) represents a combination of the conservation of fluid mass in the interstitium, with the momentum 

equation for the fluid phase.   Equation (2) represents the balance of total linear momentum in the tissue.  The equations 
above describe a homogenized medium in which each elementary continuum element contains a large number of 
microvessels. Therefore, we expect the model to work well at scales of O(1mm3), but not down to scales of O(1µm3). 
The symbols that appear in Equations (1) and (2) are  defined as follows: ∇  is the gradient operator; I is the identity 
tensor;  is the solid phase velocity;  is the interstitial permeability associated to the Darcy’s law that governs the 
ease by which fluid percolates through the interstitium; 

u κ
λ  and µ  are the elastic Lamé parameters of the drained 
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interstitium (also called the solid matrix bellow); and  χ  is the average  filtration coefficient associated to the 
Starling’s law, given by: 

 

V Lχ χ χ= + ,                                                                                                                                                             (3) 
 

where 
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Here, PL  (resp. PLL )  is the hydraulic conductivity of the hemal (resp. lymphatic) capillary wall and  VS
V

 (resp. LS
V

)  

is the surface area of the hemal (resp. lymphatic) capillary wall per unit volume  of tissue. 
In the special case χ =0, we recover the linear biphasic equations describing the deformation of avascular cartilage 

like materials. It’s implicit in the Equations (1) and (2) that the vascular pressure relaxes much faster than the interstitial 
pressure (fluid can redistribute much faster within the vascular compartment than within the interstitium). In that sense, 
the pressure p that appears in the equations is actually the fluctuating part of the interstitial pressure. 

It is implicit in the model that, in general, mechanical loading not only strains the tissue, but also pressurizes both 
solid and fluid phases. The pressurization mechanism can be understood based on the mechanical behavior of the 
drained interstitium (elastic solid matrix). In contrast to the solid phase, the solid matrix is compressible, i.e., it reduces 
its volume when a mechanical loading is applied by reducing its pore space volume. In an ideal case, where there is no 
saturating fluid or the saturating fluid can move frictionless within the pore system and drain freely to the vascular 
compartment, the pore system would shrink instantaneously in response to the applied loading. However, as the 
interstitial fluid face resistance to percolate and drain, it resists to the pore system shrinking, pressurizing and being 
pressurized by the solid phase. Relaxation takes place, i.e., pressure drops gradually, as the interstitial fluid percolates or 
drains in response to the pressurization. During the relaxation the tissue approaches to the solid matrix static 
equilibrium. At static equilibrium, p=0, and the mechanical behavior is governed by the solid matrix Lamé parameters. 
It follows from the assumption that both solid and fluid phases are incompressible that infinitesimal dilatation can occur 
only when the corresponding volume of fluid percolates or drains to vascular or lymphatic systems. 

 
3. SIMULATIONS 
 

In order to evaluate the predictions of the mathematical model with nontrivial geometries and boundary conditions, 
we developed a finite element discretization of Equations (1) and (2) in two dimensions.   We used the standard 
Galerkin approximation with bilinear shape functions for both the pressure and displacement fields.  To integrate in 
time we use the Backward Euler method, assuming all material parameters are constant with time.  We have validated 
our implementation by comparing the numerical solution to the analytical solution derived in Leiderman et al. (2006). 

We now use this finite element implementation to study problems that model hypothetical clinical imaging exams.  
In the computational experiments presented here, we tried to reproduce two hypothetical configurations for clinical 
breast exams, and investigate the strain relaxation within the sample. For both simulations we used bilinear finite 
elements on a 1000 x 1000 mesh, and backward Euler time marching with a time step of  0.03 s. 

The poroelastic medium is defined by 4 physical parameters:λ ,µ , κ and χ . In what follows, we work in plane 
strain state. The 2-D scenario assumed in the computational simulations is that of a circular inclusion embedded in a 
square tissue sample, as shown in Figs. 2 and 4.  The circular inclusion is intended to represent a malignant breast 
tumor, with stiffness, microvessel density, hydraulic conductivity, and connective tissue permeability all elevated 
relative to the background, normal, values.  

The tissue surrounding the inclusion is assumed to have ``normal" biomechanical properties. The shear modulus,µ , 
was chosen according the values reported for breast tissue in Sarvazyan (2001) assuming that it is the same for the 
saturated poroelastic (incompressible) medium and the corresponding solid matrix. We then calculated the 
corresponding value for λ assuming a Poisson ratio of 0.49. The values for κ and χ were chosen according to values 
given in Netti et al. (1995).  

Regarding the inclusion, in order to reproduce a solid tumor behavior, we assumed an augmented capillary filtration 
coefficient in all the experiments. We also assumed it is stiffer, increasing the value ofµ , and assumed a Poisson ratio 
of 0.47, calculating λ  accordingly. All the parameters used are summarized in Table I. 

 
 
 



Table I: Poroelastic parameters used in simulations 
 

Parameter Healthy tissue Tumor 
χ (Pa.sec)-1 1.89x10-8 5.67x10-7

κ (m2/(Pa.sec)) 6.4x10-15 3.1x10-14

λ (kPa) 539 517 
µ (kPa) 11 33 

 
 

3.1. Simulation 1 
 
Experiment 1 is schematically shown in Fig.2. The circular inclusion has 1cm diameter and the sample has 

dimensions 10cm x 10cm. The fluid cannot flow across the boundaries, mimicking a portion of tissue completely 
bounded by skin. Therefore, the interstitial fluid can redistribute, but the only way for it to leave the sample is by 
vascular drainage.  Such an idealized boundary condition is valid when the drainage effects are much larger than the 
percolation effects and the permeable boundary is relatively far away from the region to be investigated, as in the case 
here. The tissue is fixed at the bottom, where ux=uy=0. The lateral surfaces are traction free. At the top, we simulate the 
mechanical loading from a compressor of 5cm of width. The displacement of the compressor is modeled by a ramp 
function such that the prescribed uy goes from 0 to 1cm in 0.3sec, in the region corresponding to x=2.5cm to x=7.5cm. 
Below the compressor we prescribe zero shear stress, which models a slip boundary condition. 

 

y

 

 
Figure 2: Experiment 1. The circular inclusion has 1cm diameter and the sample has 

the top, we simulate the mechanical loading from a compression of 5cm
 
In Fig.3 we show results corresponding to the region delimited by the dotted line in F

x 4cm and is contained between x=3.0cm to x=7.0cm and y=5.5cm to y=9.5cm. We emp
problem in the entire domain, but are showing the results only in this region of intere
behavior of the inclusion and its surroundings in detail. This is intended to be represe
where the physical boundaries are typically distinct from the image boundaries. 

In this experiment, the fluid exchange between interstitial and microvascular co
phenomenon.  Due to the difference between the filtration coefficient inside and outsid
larger inside), a transient analysis of the problem can be outlined considering two differ
relatively short relaxation time and the surrounding tissue's large relaxation time. 

Right after the mechanical loading has been applied and before significant fluid drain
pressurized and the sample approximately behaves like an incompressible elastic solid, w
as the corresponding solid matrix and a Young's modulus equals to 3µ. The pressure (kPa
Fig. 3(a). We can see the stress concentrations at the transducer edges radiating in the upp
figure. At the center, we can distinguish the inclusion and four lobes resulting from t
inclusion. 

Gradually, as the fluid drains from the interstitium to the microvasculature, the tissu
the pressure (kPa) field at t=5.4sec. The comparison between Figs. 3(a) and 3(b) shows t
faster than the surrounding tissue. This may be attributed to the higher value of the micr
in the inclusion. In Fig. 3(c) we plot the difference in the x-normal strain field (εxx) betw
x

dimensions 10cm x 10cm. At 
 of width. 

ig.2. It has dimensions of 4cm 
hasize that we have solved the 
st, in order to investigate the 
ntative of ultrasound imaging 

mpartments is the dominant 
e the inclusion (it is 30 times 
ent time scales: the inclusion's 

age has occurred, the tissue is 
ith the same shear modulus (µ) 
) field at t=0.3sec is shown in 
er left and right corners of the 
he stress concentration at the 

e relaxes. In Fig. 3(b) we plot 
hat the inclusion relaxes much 
ovascular filtration coefficient 

een t= 0.3sec and t= 5.4sec, 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

i.e., εxx(t=5.4sec) - εxx (t=0.3sec). In Fig. 3(d) we plot εyy(t=5.4sec) - εyy(t=0.3sec) and in Fig. 3(e) we plot the 
corresponding dilatation difference, i.e., (εxx(t=5.4sec) + εyy(t=5.4sec)) – (εxx(t=0.3sec) +  εyy(t=0.3sec)) = ∆(t=5.4sec) 
- ∆(t=0.3sec). We observe that the dilatation in the inclusion is negative, indicating that it is shrinking as it relaxes. On 
the other hand, the volume of the surrounding tissue remains almost unchanged (∆ ≈ 0). We also observe four lobes in 
Figs 3(c) and 3(d) resulting from the stress concentration redistribution around the inclusion, which has occurred during 
the relaxation. We can see in Fig. 3(e) that the fluid drainage at the lobes is small, since the dilatation in this region is 
almost zero. In summary, at t=5.4sec, the mechanical behavior of the inclusion is approximately governed by the 
corresponding solid matrix mechanical properties; that is, it has relaxed, while the surrounding tissue still behaves like 
an incompressible material. 

 

 
 

Figure 3: (a) The pressure field (kPa) at t=0.3sec. (b) The pressure field (kPa) at t=5.4sec. (c) εxx(t=5.4sec) - εxx 
(t=0.3sec). (d) εyy(t=5.4sec) - εyy (t=0.3sec). (e) ∆(t=5.4sec) - ∆(t=0.3sec). (f) The pressure field (kPa) at t=10.2sec. (g) 

εxx (t=15.0sec)} - εxx (t=10.2sec). (h) εyy (t=15.0sec)} - εyy (t=10.2sec). (i) ∆ (t=15.0sec) - ∆ (t=10.2sec). 
 

The inclusion takes about 10secs to relax almost completely. In the Fig. 3(f) we plot the pressure (kPa) field at 
t=10.2sec. We observe that the pressure inside the inclusion is close to the equilibrium pressure (p ≈ 0). In Fig. 3(g) we 
plot εxx(t=15sec) - εxx(t=10.2sec), in Fig. 3(h) we plot εyy(t=15sec) - εyy(t=10.2sec) and in Fig. 3(i) we plot ∆(t=15sec) 
- ∆(t=10.2sec). Now, both the inclusion and the surrounding tissue relax by similar small amounts. Due to the applied 
displacement, we see that the strain occurs predominantly in the x direction and both inclusion and surrounding tissue 
shrink at approximately the same rate. We also observe that the interstitial fluid drains faster (or percolates) in a thin 
region around the inclusion, due to the stress concentration. The surrounding tissue takes about 300sec to relax almost 
completely. As discussed before, at the steady state, where both inclusion and surrounding tissue are relaxed, the sample 
assumes the configuration where the mechanical behavior of both inclusion and surrounding tissue are governed by the 
respective solid matrix Lamé parameters. 

 
3.2. Simulation 2 
 

Experiment 2 is schematically shown in Fig. 4. The circular inclusion still has 1cm diameter, while the model still 
has dimensions of 10cm x 10cm. As before, the fluid cannot flow across the boundaries and the tissue is fixed at the 
bottom. However, now the model is completely confined at the top, where uy goes from 0 to 0.03cm in 0.3sec, and is 
partially confined at the lateral surfaces, i.e., ux=0 from y=2.0cm to y=10cm, while it is traction free from y=0.0cm to 



y=2.0cm. The goal here is to reproduce a situation of partial breast confinement, with the recognition that the breast 
cannot be completely confined in the clinic. 

Here, as before, the fluid exchange between interstitial and microvascular compartments is the dominant 
phenomenon. A transient analysis of the problem can again be outlined by considering two different time scales. The 
pressure (kPa) field at t=0.3sec is shown in Fig. 5(a). We see that the pressure magnitude is similar to the previous case 
despite the much smaller displacement prescribed at the top boundary. This is obtained by confining a portion of the 
lateral surface. We also observe that in contrast to the previous case, there is no stress concentration in the upper left 
and right corners and the pressure field is almost uniform. 

As the interstitial fluid drains, the inclusion relaxes. The pressure (kPa) field at t=6.3sec is shown in Fig. 5(b). We 
can see that the pressure inside the inclusion is about 85% smaller at t=6.3sec than at t=0.3sec, while it remains close to 
the peak in the surrounding tissue. Once again this is due to the higher vascular filtration in the inclusion. In the Fig. 
5(c) we plot εxx(t=6.3sec) - εxx (t=0.3sec), in Fig. 5(d) we plot εyy(t=6.3sec) - εyy(t=0.3sec) and in Fig. 5(e) we plot 
∆(t=6.3sec) - ∆(t=0.3sec). As in the previous case, we observe that the dilatation in the inclusion is negative, indicating 
that it is shrinking as it relaxes, and the volume of the surrounding tissue remains almost unchanged (∆ ≈ 0). We also 
see four lobes resulting from the stress concentration redistribution around the inclusion. 

 

 

y 

x 

 
Figure 4: Experiment 2: The circular inclusion has 1cm diameter and the sample has dimensions
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4. DISCUSSION 
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ratio difference between incompressible material (0.5) and the solid matrix, i.e., the smaller the solid matrix Poisson's 
ratio, the larger the shrinking. 

As in the previous experiment, we see in Experiment 2 that in the first 6 seconds the inclusion shrinks about 4,000 
microstrains, which, again, for an inclusion of 1cm diameter implies displacements of the order of 40µ. The applied 
displacement, the unconfined to confined lateral area ratio and the inclusion solid matrix bulk modulus determine the 
shrinking magnitude. In the limit case, where the sample is completely confined, practically all the sample's volume 
reduction resulting from the applied displacement must be reflected in the inclusion's volume reduction. We observed 
also that after the inclusion relaxes it experiences a gradual swelling, while the surrounding relaxation takes place. It 
can be understood by recognizing that the surrounding tissue shrinks as it relaxes, because its solid matrix is 
compressible. The shrinking is partially balanced by the inclusion's swelling. Again, in the limit case, where the sample 
is completely confined all the shrinking must be balanced by the inclusion's swelling. 

 

 
 

Figure 5: (a) The pressure field (kPa) at t=0.3sec. (b) The pressure field (kPa) at t=6.3sec. (c) εxx(t=6.3sec) - εxx 
(t=0.3sec). (d) εyy(t=6.3sec) - εyy (t=0.3sec). (e) ∆(t=6.3sec) - ∆(t=0.3sec). (f) The pressure field (kPa) at t=13.5sec. (g) 

εxx (t=31.5sec)} - εxx (t=13.5sec). (h) εyy (t=31.5sec) - εyy (t=13.5sec). (i) ∆(t=31.5sec) - ∆(t=13.5sec). 
 

The results suggest that it may be possible to image the interstitial fluid motion in tissues by measuring the 
corresponding strain rate. A sequence of images acquired from ultrasound or other scanners could be processed, as they 
are in elasticity imaging, to track the spatio-temporal patterns of elastic strain. In addition, the strain pattern could then 
be used to solve for the spatial distribution of the poroelastic parameters, in particular, the shear modulus µ and the 
microvascular filtration coefficient χ. 

It is interesting to consider the ultrasound measurability of the transient strains predicted here.  In experiment 1, we 
noted a volume change in the inclusion of about 0.4% after 5 seconds, in an overall compression of 10%.  Such a 
relaxation would certainly be measurable by ultrasound, though tracking a compression over a full 10% strain might 
present technical difficulties.  On the other hand, in experiment 2, with confined compression of 0.3% we noted the 
same inclusion volume change of 0.4% over about 6 seconds.  The volume change is roughly isotropic in the plane, so 
about half that of that, or about 0.2%, would take place in the high resolution (ultrasound propagation) direction. In 
practice, it's likely that the plane strain assumption would be violated here, and the volume change might be expected to 
be isotropic in the volume.  In that case, only about 1/3 of the total volume change, or about 0.15% strain, would be 
reflected in the high resolution direction.  This magnitude of strain, over 6 seconds, would certainly be a measurable 
effect. 
 



5. CONCLUSION 
 
A poroelastic model that includes the effects of fluid flow and the possibility of exchange between fluid 

compartments was used in conjunction with finite element modeling to predict the effects of fluid flow on the spatio-
temporal patterns of soft-tissue elastic strain under a variety of physiological conditions. 

Numerical simulation results suggest that it may be possible to image the interstitial fluid motion in tissues by 
measuring the corresponding strain rate. Further, they show that the abnormal tumor microvasculature may increase the 
strain relaxation rate. 

In unconfined tests the total dilatation resulting from the tissue relaxation is controlled by the Poisson's ratio 
difference between incompressible material (0.5) and the solid matrix, while in partially confined tests it is controlled 
by the unconfined to confined lateral area ratio. 
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