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Abstract. It is known that the global strength of multi-layered composite structures strongly depends on the quality of 
the adhesion between its constituent elements. Imperfections along adhesion interfaces can effectively compromise 
structure's performance. The characterization of such defects is a very difficult task. The main goal of this study is the 
development of an analytic-numerical method to simulate the acoustic field resulting from the interaction of ultrasonic 
waves and imperfect interfaces, helping in selection of parameters for ultra-sonic inspecting methods. In that sense the 
Quasi-static-approximation (QSA) is combined with the Perturbation method to allow modelling of interfacial non-
uniform flaws. A recursive algorithm to evaluate displacements and generalized stress fields in composite layered 
plates, whose the adhesion interfaces are potentialy defective, is developed based on the invariant imbedding method. 
It is applicable to solve wave propagation problems in arbitrarily anisotropic layered plates and it is stable for high 
frequencies. An inspection simulation of a composite layered plate immersed in water is presented as illustration of the 
developed method application. Results of the simulation indicate the frequencies and angles of incidence where the 
scattering effect, which allow the characterization of non-uniform defects, is more significant. 
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1. INTRODUCTION 
 

This paper addresses the problem of ultrasonic inspection of adhesively bonded composites.  The goal here is the 
development of a systematic modeling procedure which can be used to design ultrasonic inspection methods to detect 
adhesive flaws. 

In any adhesive bond, there are two adherends, the adhesive layer itself, and the two interfaces between the adhesive 
layer and the adherends. In aerospace applications, adherend thickness are typically measured in millimeters, an 
adhesive layer has a typical thickness measuring hundreds of microns, while the interfacial layer associated with the 
interface of adhesion is just a few microns thick. By considering this interfacial layer to be infinitesimally thick, we can 
replace it by a set of equivalent springs. The springs connect the adhesive to the adherend, and enforce continuity of 
traction and (approximately) displacement. This approximation was apparently first proposed by Baik and Thompson 
(Baik and Thompson, 1984), who called it the quasi static approximation (QSA). In what follows, we use the QSA 
approximation to model the adhesive interface.  Local imperfections in the adhesive interface are thus modeled by local 
changes in the spring stiffness representing the interface. 

Several analytical approaches exist to model wave propagation in plane layered media. Of these, those that are based 
on propagator matrices are known to be numerically unstable at high frequencies. The major difficulty occurs when one 
or more wave type is evanescent. Variations of the method of invariant imbedding have been developed to overcome 
this difficulty (see for example Braga et al., (1992) and (Wang and Rokhlin, 2002)). Here, we present a variation 
developed in Leiderman et al., (2005) to predict the sound scattered from a layered plate with adhesive flaws. The 
presented algorithm is equally well suited to treating anisotropic as isotropic layers and is both unconditionally stable 
and efficient. The method is suitable for modeling of the common ultrasonic inspection approaches. As such, it may 
serve to aid in the design of these methods, as well as a basis for inverse scattering. The former application is 
demonstrated here by identifying a rule for the optimal selection of scanning parameters, in this case, angle of 
incidence. 

In the next section we begin our presentation with the problem formulation, and discuss the role of the quasi-static 
approximation for the adhesive interface. We then formally solve the problem by constructing a high order perturbation 
expansion of the exact solution.  The perturbation parameter is the strength of the inhomogeneity in the adhesive layer. 
We then present the recursive invariant imbedding algorithm to solve for each term in the perturbation expansion. As an 
example, we apply the method to the case of a three-layered plate immersed in water. We show how to use our results 
to indicate the frequencies and angles of incidence at which the scattered field is most sensitive to localized interface 
defects. 
 
 



2. PROBLEM FORMULATION 
 
We consider a layered elastic structure submerged in an acoustic fluid. The solid consists of N layers, bonded 

together by adhesive bonds.  We assume the z-axis is normal to the layering, and designate the plane z=0 to be the 
``bottom" of the plate, and z>0 ``upwards", as indicated in Figures 1 and 2. In the fluid regions, z< z0 = 0 and z>zN>0, 
the fluid pressure satisfies: 

 
022 =+∇ pkp                                                                                                                                                         (1)                        

 

downup ppp +=                                                                                                                                                         (2) 
 

0=upp                                                                                                                                                             (3) 0<z
 

knownpp incdown ==                                                                                                                                 (4) Nzz >
 

In (2) we have decomposed the pressure field into up and downgoing components, respectively. The conditions (3) 
and (4) thus represent radiation conditions.   In the equations above and in what follows, we assume and suppress a time 
dependence of . tie ω−

The  layer of the solid is supposed to occupythn nn zzz <<−1 , and have elasticity tensor  and density .  

Therefore, the stress σ  and displacement u  in the  layer satisfy: 

nC nρ
thn
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nCσ = :                                                                                                                                     (6)                        u∇ nn zzz <<−1

 
We note that the  layer may be either a structural layer or an adhesive layer. thn

Making use of the quasi-static approximation (QSA) for the interface condition, as seen in Fig.1, gives us the 
following boundary condition at the interface between the  and  layers: thn thn 1+

 
)()]()([ +−+ =− nnn zzz tuuK                                                                                                                                    (7) 
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Here, K is a diagonal spring matrix, is the displacement vector in the  layer,  is the traction vector 

acting on the xy plane. We note that the entries in 

)( nzu thn )( nzt
K are given in terms of the assumed thickness and elastic properties 

of the interfacial layer (Rokhlin and Huang, 1992). Higher order extensions of similar models for thin layers have 
recently been described in (Zakharov, 2006), (Wang and Rokhlin, 2004a) and (Wang and Rokhlin, 2004b). 
 

 
 

Figure 1. Quasi Static Approximation (QSA). When the inspecting wavelength to the interface-thickness ratio is 
large, interfaces of adhesion can be modeled as distributed transversal and normal springs. 
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Imperfections in the adhesive bond between layers may be modeled by a reduction in spring constants in K . Since 

imperfections tend to be localized in space, this implies that must be allowed to depend upon position in the 
layer. Therefore, we write: 

),( yxK

  
),(10 yxKKK ε+=                                                                                                                                               (9) 

 
Here, is constant and is a function of the in plane position coordinates (x,y). The dimensionless 

parameter
0K ),(1 yxK

ε represents the magnitude of the defect. A similar approach to represent localized defects can be found in 
Nakagawa et al., (2004). In the following, we determine the asymptotic expansion of the solution about the 
point 0=ε . In many cases of interest, the resulting series expansion converges. Accordingly, we expand the 
displacement and traction fields in the standard way:  
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Substituting (9-11) into the boundary conditions (7) and (8) leads to the following sequence of boundary conditions 

for each power of ε . For O(1) through O(ε2), we obtain: 
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and etc.  The field equations in each layer (5) and (6) remain unchanged in form and are satisfied by each term in the 
series (10) and (11). 

As seen in expressions (14) or (16), the terms  can be understood as traction sources, or 

surface forces acting along the interface of adhesion.  To simplify notation we will define 

)]()([1
−+ − nmnm zz uuK

mϕ  for use in later sections 
of this paper: 
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−                                                                                                                               (18) 
 
The equations above show that the O(1) terms satisfy the equations in a medium with no adhesion defects. This term 

will be called the specular field. Further, the terms of O(εm) are determined from the terms of O(εm-1). More precisely, 
the O(εm) terms satisfy the equations for a layer without defects, but with an acoustic source term determined from the 
defect and the O(εm-1) field. Thus, in order to solve for each term in the series, we need consider the field radiated 
sources embedded in a plate without defects. The terms can be calculated in succession until the sum converges.  We 
refer to the sum  as the scattered field. …+++= nnnn

s 3
3
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3. RECURSIVE SOLUTION ALGORITHM  
 
In this section we present a variant of the invariant imbedding method well suited to solve precisely the problem at each 
perturbation order.  The presented algorithm is equally well suited to treating anisotropic as isotropic layers. A detailed 
derivation can be found in Leiderman et al. (2005). 

 We begin at the “bottom" of the plate ( ) where the plate is in contact with a known substrate. In the cases we 
consider, that substrate is a semi-infinite quiescent fluid, but extensions to other substrates are straightforward. At the 
surface of the known substrate, we know the acoustic impedance (for each 

0z =

x− wavenumber) presented to the plate, and 
so can evaluate the boundary condition on the plate. The next step is to consider an elastic layer overlying an arbitrary 
substrate with known surface impedance and traction sources. The goal is to compute the surface impedance and 
traction sources acting on the top surface of the layer, in terms of the corresponding values on the bottom of the layer 
and the properties of the layer itself. After this, we perform a similar calculation with the elastic layer replaced by a 
“spring" interface which models the adhesion interface.  

This gives us all the ingredients we need to solve the problem. We build these into a loop, in which the impedance 
and traction sources at each interface in the material are successively computed, starting at the bottom of the plate and 
ending at the top. Once the surface impedance and traction sources at the top are known, we impose the conditions of 
continuity of pressure and normal velocity at the top fluid interface. This formally completes the solution as both the 
incident and radiated pressures in the fluid above the plate are known. To evaluate the fields inside the plate, we must 
propagate the whole solution back down into the plate. We call this part of the solution the “backward sweep". The 
geometry of the problem tackled here is shown schematically in Fig 2.  

 

 
 

Figure 2. General problem consisting of a layered plate immersed in an acoustic fluid, in the context of the QSA. The 
layered plate is infinite in x and y directions and has its constituent layers joined by adhesive layers. N is the total 

number of layers plus two half-spaces and n stands for the nth layer or interface. 
 
3.1. Elastic layer  
 

Here we consider an elastic layer with thickness  resting on a substrate. The bottom of the layer is located at 
. The top of the layer is . The substrate upon which the layer rests has a known surface 

impedance  and traction source field . Thus, at 

h
0z z= 1 0z z z h= = +

oG F 0z z= , in the substrate: 
 

ooiω= − +t uG F ,                                                                                                                                                 (19) 
 
where the bar over the field variables indicates a single Fourier transform over the coordinate x, indicating that we work 
in the x-wavenumber domain. 
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Our goal in this section is to evaluate the equivalent surface impedance and source field at the top surface of the 
elastic layer, while taking account of the substrate impedance and the elastic properties of the layer itself. In solving the 
equations of motion (5 & 6) in the elastic layer, we introduce “upgoing" and “downgoing" partial waves in the solid 
according to their wavenumbers in the vertical ( ) direction. In particular, we denote by z 1u  the sum of all upgoing 
(displacement) waves in the solid, and by 2u  the sum of all downgoing (displacement) waves in the solid.  

The traction vectors (on planes of constant ) associated with each set of waves can be given in terms of the local 
impedance tensors,  and  as:  

z
1Z 2Z

 
1 11( ) ( )z i zω= − uZt                                                                                                                                                (20) 

 
2 22( ) ( )z i zω= − .uZt                                                                                                                                             (21) 

 
The impedance tensors jZ  are given in Leiderman et al. (2005).  

At the bottom surface of the elastic layer, the boundary condition (19) applies. Thus: 
  

1 21 2 1 20 0 0 0( ) ( ) [ ( ) ( )] ooi z i z i z zω ω ω− − = − +u u G u uZ Z + .F                                                                         (22) 
 
Solving for 1u  gives us  
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The tensor  introduced above is called the reflection tensor of the interface at 0( )zR 0z z= .  

We now introduce two propagator matrices,  and  :  1M 2M
11 1 1( ) ( ) ( )z z z= −u M 1 zu                                                                                                                                       (25) 

 

22 1( ) ( ) ( )z z z= −u M 2 1zu                                                                                                                                     (26) 
 
Expressions for  and  are given in Leiderman et al., 2005. Thus, at the top of the layer:  1M 2M
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1
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Here we introduced S  which transports traction sources at 0z z=  into displacement sources at . In (28) we 

took advantage of the fact that, due to its characteristics, the inverse of the matrix  can be written as 
1z z=

2( )hM 2( )h−M , 
avoiding eventual numerical troubles in the inversion.  

The total displacement at the top of the layer can be given in terms of , the incident displacement field: 2u
 

21 1 1( ) [ ( )] ( ) oz z z= + +u I R Su F .                                                                                                                         (30) 
 

The total traction at the top of the layer, i.e. at 1z z= , can now be written in terms of u :  
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1
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Equation (31) is of the same form as the given boundary condition at the bottom of the layer, equation (19). These 
results show how the impedance of a layered elastic structure can be computed, layer by layer. The matrix  
transports the effects of sources below a given elastic layer to the boundary condition at the top of the layer. The 
adhesion interfaces are modeled next.  

W

 
3.2. Adhesion interfaces  
 

The interface condition is:  
 

0[ ( ) ( )] ( ) ( )n
n n n nz z zϕ+ − +− + = =u u t tK z− .                                                                                                        (35) 

 
Here as earlier, the superscript +  indicates the values of the field variables above the interface, while the superscript −  
indicates those below. At the bottom of the interface, the adhesion interface is assumed to be in contact with an elastic 
layer, at the surface of which the following impedance boundary condition holds:  
 

( ) ( )n nz i zω− −− −= − + .t uG F                                                                                                                                   (36) 
 

To find the equivalent boundary condition at the top of the adhesive interface, we solve (35) for ( )nu z−  and 
substitute into (36) to find:  

 
( ) ( ) ( )n n nz z i zω+ − ++ += = − +t t uG F                                                                                                                   (37) 
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11
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3.3. Forward sweep  
 

By using the results of this and the previous subsections, we can now determine the impedance of a layered plate 
with the lamina joined by adhesion interfaces modeled according to the QSA. The procedure is roughly as follows. We 
begin by considering a single elastic layer overlying a half-space. The half-space occupies the region  and has 
known impedance. We may now use (31) to determine  (see Figure 2), the total impedance at , of the elastic 

layer/half-space system. Next we add a spring layer to the top of the elastic layer. We then compute 

0z <
1G 1z h=

1+G , the total 
impedance of the adhesion interface/elastic layer/half-space system by using (37). We continue to find the impedance of 
the system for each additional layer added to the system by alternately using equations (31) and (37). Eventually we 
compute , the total impedance of the entire laminated plate in contact with the upper half-space, and the 
corresponding transported source vector.  

NG

 
3.3.1.Getting started  
 

To begin the forward sweep, we need the initial impedance values for a half-space. For an elastic half-space in 
which the radiation condition is satisfied at infinity, 0

2=G Z . For a traction free surface at the bottom of the plate, we 

take . For a fluid half-space, a straightforward calculation gives the impedance as follows:  0 = 0G
 

0
fZ= ⊗n nG                                                                                                                                                          (40) 
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f
fZ

ρ ω
β

=                                                                                                                                                                (41) 

 
In (40) we introduced , which represents the unit vector normal to the interface (i.e. in the direction.) The 
function 

n z −
( )β β ω α= ,  is the wavenumber in the z − direction, which is computed from frequency ω  and 

wavenumber x− α  by 2 2 2
fcβ ω= / −α . The sign is chosen in accord with the radiation condition; fc  denotes 

the sound speed in the fluid.  
 
3.3.2. Scattering & radiation from top surface  
 

Once we can compute  and NG NF , the impedance and transported acoustic sources at the top surface of the plate, 
we can formulate the reflection and radiation problem there. The boundary conditions in terms of the fluid pressure ℘ 

and fluid normal displacement fw  at the top interface are: 
 

N = −℘nt                                                                                                                                                               (42) 
 

N
fw⋅ =n u .                                                                                                                                                              (43) 

 
These conditions enforce continuity of traction and normal displacement at the fluid/solid interface. Of course, we also 
have our impedance condition on the top surface of the solid:  
 

N N Niω= − + .uG Ft                                                                                                                                               (44) 
 
Substituting (42) into (44) and solving for u  gives 
 

1[ ] (N Niω −= ℘ +u nG F ).                                                                                                                                      (45) 
 

As in every other layer, we decompose the pressure into downgoing (incident) and upgoing (radiated) fields, 
  

inc rad℘=℘ +℘ .                                                                                                                                                       (46) 
 
Following steps analogous to those that lead to equations (23) and (24) leads us to  
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−
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,
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                                                                                                                                                           (48) 

 
1[ [ ] ]N

sZ − −= ⋅ ⋅n nG                                                                                                                                             
(49) 
 
The right hand sides of (47-49) are all known. At this point, the solution at a given perturbation order is formally 
known.  

In order to compute the solution at order 1m+ , we must know the interior displacement field at order  in order 
to evaluate the forcing terms in (18). We call that procedure the “backward sweep," and a full description can be found 
in Leiderman et al. (2005).  

m

 
 
 



 
4. NUMERICAL SIMULATION  
 

We present results of the simulation in this section. The example chosen corresponds to ultrasound inspection of a 
layered plate immersed in water. In particular, we show detection of a “kissing bond" in the plate. The plate is supposed 
to be composed of three layers: a copper layer with 3  thickness, an epoxy layer with 200 mm mµ  thickness acting as 
the adhesive layer, and an aluminum layer with  thickness. The plate is shown schematically in Fig. 3. It has, 
consequently, two internal adhesion interfaces: one between the copper and epoxy layers, interfaceb , and another 
between the epoxy and aluminum layers, interface . The mechanical properties of its constituent materials are shown 
in Table I. 

3mm

a

 
 
 Table 1. Mechanical properties 

 

 
Material  Density 

3( )Kg m/
P-
Wave 
speed 
( )m s/

S-
Wave 
speed 

 ( )m s/
Aluminum 2700  6320  3130   
Cooper  8930  4660  2660   
Epoxy  1200  2150  1030   
Water  1000  1480  0   

Figure 3. The modeled plate. 
 

 

The adhesion interface layers are assumed to have nominal thicknesses of 3µm each. When intact, they have the 
same mechanical properties as the epoxy. Accordingly, by the QSA model these interfaces can then be represented by 
the following spring stiffness matrix (Rokhlin and Huang, 1992):  
 

15
0

0 4259 0 0
0 0 4259 0 1 10
0 0 1 8457

Pa m
.⎡ ⎤

⎢ ⎥= . ×⎢ ⎥
⎢ ⎥.⎣ ⎦

K /                                                                                            (50) 

 
As mentioned above, the assumed bond defect models a “kissing bond." This is a region at the interface in which 

there is a strong contact between the two media, but poor adhesion. The contact allows the bond to transmit normal 
traction and displacement, without the ability to transmit shear traction or in-plane displacement. We modeled this 
defect by changing only the  component (i.e. the in-plane component) of the original adhesion interfacial stiffness. 
Thus, for interface a we assumed that the xx component of εK

x
1 is a Gaussian curve with maximum value equal to 90% 

of the original interfacial stiffness, and its length approximately 5mm, as shown in Fig. 4 - left.  
 

  
Figure 4. Left - The defect representing a kissing bound. Its maximum value is 90% of the original stiffness of adhesion 
and its length is about 5mm. Right - The acoustic incident field is a gaussian wave-beam with about 20mm of length and 

incident at the plate’s top surface with an angle of 3.82 degrees. The frequency is 4.9MHz. 



 
We chose the incident field to be an obliquely incident time-harmonic gaussian beam, with beam waist about 20mm 

wide, frequency of 4.9MHz and angle of incidence of 3,82o. The frequency and angle of incidence were chosen to excite 
a leaky-Lamb mode in the plate that maximizes the scattered field (Leiderman et al., 2005). The incident field is 
represented schematically in Fig. 4 - right. 

The spectra of the specular reflected and the scattered pressure fields in the upper fluid half-space are plotted in Fig. 
5, left and right, respectively. Recall that by specular reflected field, we mean the field in the absence of a flaw, while 
scattered field is the difference between the total field and the specular field. It can be seen from these plots that the 
spectrum of the scattered field is much broader than the spectrum of the specular field, the latter having the same 
spectral width as the incident field. This broadening effect is associated with scattering of the incident signal by the 
defective interface. We also see, in the spectrum of the scattered field, significant amplitudes for negative propagation 
directions. These are associated with negative components of -wavenumber, indicating pronounced back-scattering in 
the incident direction. 

x

 

 
Figure 5. Left - Spectrum of the reflected pressure field. Right - Spectrum of the scattered pressure field. 

 
The reflected acoustic energy fields are represented in Fig. 6. The plot at the left is related to the plate with non-

defective interfaces, while the plot at the right is related to the plate with the kissing bond present in interface . Data 
are plotted in dB for a better visualization of the difference between the two fields and the reference value is the 
maximum intensity of the incident field. The leaky-Lamb pattern is clearly shown at the left. Comparing the two figures 
shows the scattering effect resulting from the presence of the interface defect. For example, we see that the maximum 
intensity of the backscattered signal is about 30dB lower than the maximum intensity of the specular reflected field.  

a

 

 
 
Figure 6. Left - The acoustic energy field related to the plate with homogeneous interface. Right - The acoustic energy 
field related to the plate with the defect present in the interface Data are plotted in Db where the reference value is the 

maximum value of the incident acoustic energy field.  
 



 
5. SUMMARY AND CONCLUSIONS  
 

We presented an analytic-numerical method to simulate the interaction of ultrasonic waves with imperfectly bonded 
plates. The primary ingredients in our solution are the QSA approximation for the adhesion interfaces, the perturbation 
method to account for non-uniform flaws, and the invariant imbedding method to give us numerical stability even for 
evanescent wave components at high frequencies. These combine to give us a recursive algorithm to evaluate 
displacements and generalized stress (pressure) fields in general problems consisting of composite layered plates. The 
algorithm is equally well suited to treating anisotropic as isotropic layers.  
We illustrated the technique in Section 4 by simulating the ultrasonic inspection of an imperfectly bonded plate. These 
show that ultrasound can reveal the presence of kissing bonds. Such simulations can be used more generally in the 
design of ultrasound inspecting systems by exploring the design parameter space, such as frequency, angle of incidence, 
beam width, pulse length, etc. For pulse length, an additional Fourier transform is required.  
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