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Abstract. Functionally Graded Materials (FGMs) possess continucarsation of material properties and are charac-
terized by spatially varying microstructures. Recentig EGM concept has been explored in piezoelectric matetdals
improve properties and to increase the lifetime of pieztteleactuators. Elastic, piezoelectric, and dielectrioperties

are graded along the thickness of a piezoceramic FGM. Thesgtadation of piezoceramic properties can influence
the performance of piezoactuators, and an optimum gradaten be sought through optimization techniques. How-
ever, the design of these FGM piezoceramics are usuallyelihto simple configurations. An interesting approach to
be investigated is the design of FGM piezoelectric mechagisvhich essentially can be defined as an FGM structure
with complex topology made of piezoelectric and non-piertdc materials that must generate output displacemeidt a
force at a certain specified point of the domain and directidhis can be achieved by means of topology optimization
techniques. Thus, in this work, a topology optimizatiomfolation that allows the simultaneous search for an optimal
topology of a FGM structure (made of piezoelectric and n@epelectric materials) in the design domain, to achieve
certain specified actuation movements, will be presenté@. optimization problem is posed as the design of the FGM
structure that maximizes output displacements or outpue®in a certain specified direction and point of the domain.
To provide realistic designs, the material gradation is strained to one-dimension. The method is implemented based
on the "Solid Isotropic Material with Penalization" (SIMR)odel where fictitious densities are interpolated in each fi-
nite element, providing a continuum material distributiorthe domain. A gradient control for material gradation was
implemented allowing us to analyze the influence of propgndgation in the actuator performance. The optimization
algorithm employed is based on sequential linear prograngn(SLP). Two types of FGM piezoelectric mechanisms were
designed to demonstrate the usefulness of the proposedaneth
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1. INTRODUCTION

Piezoelectric micro-tools offer significant promise in adeirange of applications involving nanopositioning and
micromanipulation (Ishihara et al. 1996). For instancezpelectric positioners are applied to atomic force mwopss
(AFM) and scanning tunneling microscopes (STM) for positigy the sample or the probe, respectively (Indermuhle
et al. 1995); piezoelectric microgrippers are applied taromhanipulation (Pérez et al. 2005), cell manipulation and
microsurgery (Menciassi et al. 2003). The micro-tools Ugu=nsist of multi-flexible structures actuated by two or
more functionally graded piezoceramic devices that musegse different output displacements and forces at éiffer
specified points of the domain and on different directiortaus] the development of these piezoelectric micro-toajsire
the design of actuated compliant mechanisms (Howell 20€it)dan perform detailed specific movements. Although the
design of such micro-tools is complicated due to the coggtiatween movements generated by various piezoceramics,
it can be realized by means of topology optimization (Cadfaid Frecker 2000; Carbonari et al. 2005) which even
allows the simultaneous search for an optimal topology oxilfle structure as well as the optimal positions of the
piezoceramics in the design domain, to achieve certainfigmeactuation movements (Carbonari et al. 2007).

Functionally Graded Materials (FGMs) are special matetiaght possess continuously graded properties and are char-
acterized by spatially varying microstructures createsdyuniform distributions of the reinforcement phase ad a®l
by interchanging the role of reinforcement and matrix (baseterials in a continuous manner (Miyamoto et al. 1999).
The smooth variation of properties may offer advantageh sisclocal reduction of stress concentration and increased
bonding strength.

Topology optimization is a powerful structural optimizatimethod that seeks an optimal structural topology design
by determining which points of space should be solid and kvpigints should be void (i.e. no material) inside a given
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Figure 1. (a) Conventional FGM piezoactuator design (FGREkpteramic position is fixed); (b) FGM piezoelectric
device design considering the simultaneous distributfdfGM piezoceramic and void in the design domain.

domain (Bendsge and Sigmund 2003). However, the birtary {) design is an ill-posed problem and a typical way to
seek a solution for topology optimization problems is t@xehe problem by defining a material model that allows for
intermediate (composites) property values. In this sethgerelaxation yields a continuous material design prokitesth

no longer involves a discernible connectivity. Typicailtyis an improperly formulated (ill-posed) topology optiration
problem for which no optimum solution exists (0-1 design}opology solution can be obtained by applying penalization
coefficients to the material model to recover the 0-1 des#éyd (thus, a discernible connectivity), and some gradient
control of material distribution, such as a filter for exam(Bendsge and Sigmund 2003; Belytschko et al. 2003).

The relaxed problem is strongly related to the functiongtgded material (FGM) design problem, which essentially
seeks a continuous transition of material properties (khigto et al. 1999). In contrast, while thie- 1 design problem
does not admit intermediate values of design variables; @M design problem does admit solutions with intermediate
values of the material field.

Due to the attractive possibilities of tailoring the maakproperties, some researchers have applied optimization
methods to design FGMs (Turteltaub 2002b). The applicatf@generic optimization method to tailor material propert
gradation has been proposed by Paulino and Silva (Pauliti&éwe 2005) who applied topology optimization to solve
the problem of maximum stiffness design.

Recently, the concept of functionally graded materialsNisEhas been explored in piezoelectric materials to improve
their properties and increase the lifetime of piezoele@dtuators (Almajid et al. 2001). Usually, elastic, pideogic,
and dielectric properties are graded along the thickneas 6flGM piezoceramic. Previous studies (Almajid et al. 2001;
Zhifei 2002) have shown that the gradation of piezoceramoperties can influence the performance of piezoactuators,
such as generated output displacements. This suggestsptiraization techniques can be applied to take advantage of
the property gradation variation to improve the FGM piezoatr performance.

However, the design of these FGM piezoactuators are usliralited to simple shapes. An interesting approach to
be investigated is to mix the concept of FGM with micro-todfet is, to design FGM piezoelectric mechanisms which
essentially can be defined as a FGM structure with complestégy made of piezoelectric and non-piezoelectric malteria
that must generate output displacement and force at a respacified point of the domain and direction. This can be
achieved by using topology optimization method.

Thus, the objective of this work is to develop a topology oytiation formulation that allows the simultaneous dis-
tribution of void and FGM piezoelectric material (made oézbelectric and non-piezoelectric material) in the design
domain, to achieve certain specified actuation movemenig design problems are considered simultaneously: the
optimum design of the piezoceramic property gradation @mFGM piezoceramic domain,and the design of the FGM
structural topology. Figure 1 illustrates the concept oMF@iezoelectric devices proposed in this work.

The optimization problem is posed as the design of a FGM &treicas well as its property gradation that maximizes
output displacement or output force in a specified directind point of the domain, while minimizing the effects of
movement coupling (Carbonari et al. 2005). The method idempnted based on the solid isotropic material with pe-
nalization (SIMP) model where fictitious densities arerpt¢ated at each finite element, providing a continuous rizte
distribution in the domain. The optimization algorithm doyed is based on sequential linear programming (SLP) (Van-
derplaatz 1984; Hanson and Hiebert 1981). Since the posifipiezoceramic are not known Sa priban independent
electrical excitation is considered for each finite elenvamith is equivalent to a constant applied electric field @aari
et al. 2007). This decouples the electrical and mechanicdll@m, however, the dielectric properties are not takém in
account in the design problem.
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Thus, this formulation contributes to increase the desmxibllity of these devices allowing the design of novel type
of FGM piezoactuators for different applications. Two FGMzbelectric mechanisms were designed to demonstrate the
usefulness of the proposed method. An one-dimensionatreamsof the FGM gradation is imposed to provide more
realistic designs. The use of topology optimization fordlesign of FGM piezoactuators is a novel approach that has the
potential to dramatically broaden the applied range of slestices, especially in the field of smart structures.

2. Finite Element FGM Piezoelectric Modeling

The micro-tools considered here operate in quasi-statmwafrequency modes (inertia effects are neglected). When
non-piezoelectric conductor material and a piezoceranaterial are distributed in the piezoceramic domain, thetedele
positions are not known “a priori”, as discussed ahead. Tineselectrical excitation is given by an applied electréddi
(Carbonari et al. 2007 ¢=constant). In this case, all electrical degrees of freedmspecified in the FE problem, and
thus the linear finite element (FE) matrix formulation of #raguilibrium equations for the piezoelectric medium is give
by (Lerch 1990):

[IIEEZ —%LHE}—{E}:HK]{U}—{Q} @)

whereK,,,, K,4, andK,, denote the stiffness, piezoelectric, and dielectric roas;i respectively, ani, Q, U, and
® are the nodal mechanical force, nodal electrical chargdalndisplacements, and nodal electric potential vectors,
respectively (Lerch 1990).

In the case of FGM piezoceramics, the properties changéemnisly inside the piezoceramic domain, which means
that they can be described by some continuous function afipos in the piezoceramic domain, that is:

C=C(x); e=e(x); € =¢"(x) )

From the mathematical definitions K., K¢, andK,4, these material properties must remain inside the matrices
integrals and be integrated together by using the gradad #fément concept (Kim and Paulino 2002) where properties
are continuously interpolated inside each finite elemes¢tan property values at each finite element node. An attempt
to approximate the continuous change of material propebyea stepwise function where a property value is assigned
for each finite element may result in less accurate resutts widesirable discontinuities of the stress and straiddiel
Therefore, the mechanical and electrical problems areugded, and only the upper problem of Eq. 1 needs to be directly
solved. Essentially, the optimization problem is basedt@nrhechanical problem. As a consequence, the dielectric
properties do not influence the design.

3. Design Problem Formulation

For topology optimization (Carbonari et al. 2005) numdriogplementation, we are considering the continuous
distribution of the design variable inside the finite eleirf@ninterpolating it using the FE shape functions. In thisea
the design variables are defined for each element node. Watarested in a simultaneous distribution of void, and
FGM piezoelectric material in the design domain, and thhissfollowing material model is proposed based on an simple
extension of the SIMP (“Solid Isotropic Material with Peimation”) model (Carbonari et al. 2007):

C = pi"[p2C1+ (1 = p2) Ca] + (1 = pi**) Cuoia (3)

e = pi [prer + (1 —p2)es], (4)
wherep; andp, are pseudo-density function representing the amount ofmahtt each point of the domain. These
pseudo-densities can assume different values at eachdlaiteent node. Thug, = 1.0 denotes FGM material and
= 0.0 denotes void, ang, = 1.0 denotes piezoelectric materigbe 1 or p; = 0.0 denotes piezoelectric materigpe 2.

C ande are stiffness and piezoelectric tensor properties, reisedc of the material. The tensos; ande; are related

to the stiffness and piezoelectric properties for pieztele material type j (j = 1, 2), respectivel\{C,.;q IS the tensor
related to void stiffness property. Eventually, the pideoic materiatype 2 can be substituted by the flexible structure
material (non-piezoelectric material, such as Aluminuon,example), and in this cage = 0. These are the properties
of basic materials that are distributed in the piezoceratoinain. The dielectric properties are not considered kmxau
constant electric field is applied to the design domain astrédal excitation, this approach decouples the eledteod
mechanical problems eliminating the influence of dielegtroperties in the optimization problemc1 is a penalization
factor to recover the discrete design, and its value varges D to 3. For a discretized domain into finite elements, Eq. 3
and 4 are considered for each element node, and the matenrties inside each finite element are given by functions
of X ((p1 (x) and (2 (x)). This formulation leads to a continuous distribution ofteral along the design domain. Thus,
by finding the nodal values of the unknown(x) and (2 (x) function, we are indirectly finding the optimum material
distribution functions, which are described by Eq. 2.
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Figure 2. Load cases for calculation of: generated outmpiadcement, mean compliance and generated normal displace
ment. HereE; = —V¢; denotes the electrical field associated with load ¢ase

In this work, the piezoceramic electrodes are not known fargir and, thus, an electric field is applied as electrical
excitation. Essentially, the objective function is defimederms of generated output displacements for a certaitieapp
electric field to the design domain. Consideriigand ¢, the electrical displacement and electrical potentialteeldo
load case, respectively, the generated output displacement is akfip€in this work,E; is prescribed) (Carbonari et al.
2007):

Uout, = /
I

asd, = 0 in this problem. The load cases considered for calculatiogenerated output displacement are shown in
instances 2(a) and 2(b) of Figure 2.

However, the optimum solution obtained considering ongyrtfaximization of generated output displacement may be
a structure with very low stiffness. The piezoactuator mesist to reaction forces (in regidn,) generated by a body
that the piezoactuator is trying to move or grab. Thereftire, mean compliance must be minimized to provide enough
stiffness (see Figure 2(c)). The mean compliance is catdilay considering the load case described in case 2(c) ofé-ig
2 where a traction; = —t4 is applied to regioi’s, and the electric field is kept null inside the mediuEy(= 0). The
displacement coupling constraint is obtained by miningaime absolute value of the corresponding undesired gesterat
displacement that is, a displacement normal to the desisgdadement, which is calculated by using Eqg. 5, however,
considering a load case described in case 2(d) of Figuret@adswhere a tractioty, normal tot., is applied to region
I't, (Carbonari et al. 2007).

To properly combine the desired output displacement madtitin, mean compliance maximization, and coupling
constraint minimization, a multi-objective function isngructed to find an appropriate optimal solution that caoiipo-
rate all design requirements. The following multi-objeetiunction is proposed to combine all these optimizatigreats
(Carbonari et al. 2007):

tgul dl—‘-f—/ dggbl ar Z/ tguldl—‘ (5)
La, r

to to

.7:([)1, p2) =wxlIn [uouh] - % (1 - w) In [Lg(llg, ¢3)2 + 0 ufwrmal} ) (6)

wherew is a weight coefficientq < w < 1). The coefficient w allows control of the contributions ofngeated output
displacement, mean compliance, and displacement couplihg design. Accordingly, the final optimization problesn i
defined as:

Maximize: F(p1,p2)

p1(%), pa ()

subject to: Equilibrium equations for different load cases @)
0<p <L;0<pa < 1
O1(p) = [4p1dS — O15 < 0; O2(p) = [4 p2dS — Oz5 <0
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Here S denotes the design domai®, is the volume of this design domain, aft s is an upper-bound volume
constraint defined to limit the maximum amount of materiadito build the FGM coupling structure. Moreovér;
is the volume related tp,, and©-5 is an upper-bound volume constraint defined to limitvalues when optimizing
the FGM gradation function. The other constraints are égiiim equations for the piezoelectric medium considering
different load cases. The equilibrium equations are sobegmhrately from the optimization problem. They are stated i
the problem to indicate that, whatever topology is obtajitedust satisfy the equilibrium equations.

4. Numerical Implementation

The continuum distribution of pseudo-densitiggx) andp- (x) are given by the functions

pr(x) =Y pulNi(x); pa(x) = parNs(x), (8)
=1 =1

wherep;; andps; are nodal pseudo-densities; is the finite element shape function that must be selectedaidge
non-negative values of the design variables, apds the number of nodes at each finite element. The pseudatidens
p1r andpsr can assume different values at each node of the finite element

Due to the definition of Eq. 8, the material property funci¢Biqs. 3 and 4) also have a continuum distribution inside
the design domain. Thus, considering the mathematicalitiefia of the stiffness and piezoelectric matrices of Eq. 1,
the material properties must remain inside the integradsbenintegrated together by means of the graded finite element
concept (Kim and Paulino 2002). The finite element equilibriEq. 1 is solved considering 4-node isoparametric finite
elements under either plane stress or plane strain assamapti

When a non-piezoelectric conductor material (usually aametich as Aluminum) is considered in Egs. 3 and 4, a
relevant problem to be solved is how to define the piezoceratactrodes. If a non-piezoelectric conductor matera (f
example, Aluminum) is distributed in the piezoceramic desiomain, we cannot define “a priori” the position of the
piezoceramic electrodes because we do not know where thegeiemic is located in the design domain. To circumvent
this problem, we consider the electrical problem indepatigdor each finite element of the piezoceramic domain by
defining a pair of electrodes at each finite element, thatish éinite element has its own electrical degrees of freedom.

Thus, each finite element has 4 electrical degrees of freegieem by [0, ¢v, dc, Pa] (NOdes are ordered counter-
clockwise starting from the upper right corner of each fieiement) considering that one of the electrodes is grounded
Electrical voltagep, is applied to the two upper nodes, and thus, the four eletuliegrees of freedom are prescribed at
each finite element, as follow§, ¢o, 0, 0]) (Carbonari et al. 2007). This is equivalent to applying astant electrical
field along the3-direction in the design domain. In this case, all electritezgrees of freedom are prescribed in the FE
problem. By means of the FE matrix formulation of equilitmiuEq. 1, the discretized form of the optimization problem
given by Eq. 7 is restated as:

Maximize: .7:(p1]7p2])

P11, P21

subjectto: {F3} =—{F2} (T, =T%,)
{Fy} {Fo} =0  (Ty, =T¢,)

(K] {th} ={} (o] {Uo} = {Q2} (9)
(Ks] {Us} = {Qs} (o] {Us} = {Qa}
0<pir <L;0<por <1 I=1.N,

PO g, P1dS1 —©15 <0
¥4 g, P2dS; —BO25 <0

where the integrals in the volume constraint expressiomgwaluated by using Gauss quadrature (4 points) and consid-
ering Eq. 1. The parametéy, is the number of nodes in the design design domain. MoredVgrdenotes the number

of elements in the design domain. The matrigég and[/Cs] are reduced forms of the matrfiXs] considering non-zero
and zero specified voltage degrees of freedom (appliedieléetd) at the piezoceramic domain, respectively. Theahi
domain is discretized by finite elements and the pseudoiiEg; andp,) are the values o, ; andp,; are defined at
each finite element node in the design domain.

5. Material Gradation Control

CAMD approach ensures the continuous material distribugicross elements. However, it does not provide a gen-
eral control of the gradient of material distribution. Tchave a meshindependent control of the gradient of material
distribution, we introduce a new layer of design variabled ase a projection function to obtain the material derstie
nodes. This concept of using nodal design variables an@gtiop functions has been developed in (Guest, Prevost, and
Belytschko 2004). This concept will be applied on top of tHeMD in this paper.
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Let dy,, andd,,, denote all design variables associated with ngdesand layerss s, respectively. Assume that the
required change of material density must occur over a mimnength ofr,,;,. pir andps; can be obtained fromi,,
using a projection function defined by Guest et al. (2004jpbaws:

Pn = f(dn)a (10)
wheref is the projection function defined as follows.

Djes, dw(zy — ;)

11
> e, w(@; —70) )

pi = f(d;) =

ands; is the set of nodes in the domain of influence of nb¢le;), which consists in a circle of radius,;,, and center at
nodei. The weight functiow is defined as follows.

Tmin —Tij |f x] c Ql
R o 12
(@ =) { 0 otherwise (12)

r;; 1S the distance between nodesndi
rij = llzj — @il (13)
The topology optimization problem definition is revised akbofws.

Maximize: F(d,,)

dy

subjectto: {F3} = —{Fs} (T, =T%,)
{Fu} {Fo} =0  (Ty, =T,)
(Kl {thh} = {1} (Kol {Uz} = {Q2}
[’C3] {U3} ={Qs} (Kol {UUs} = {Qa}
ZI 1 Sy d1,dS; — 015 <0
Z] 1 S dQndSJ_®25‘<O
0 < d2n < 1;

(14)

The mathematical programming method called SequentiadriRrogramming (SLP) is applied to solve the optimiza-
tion problem (Hanson and Hiebert 1981; Vanderplaatz 1984 linearization of the problem at each iteration requires
the sensitivities (gradients) of the multi-objective ftino and constraints in relation tb,.

A flow chart of the optimization algorithm describing the manvolved is shown in Figure 3. The software was

implemented using the C language.
Generate random In|t|a||zat|on and
de:;lgn variablesd Data Input
'R,

Obtain nodal densities p;, and p,_ L

from d (using a projection function)

Calculation of Objective Function and Constraints‘ A

|
Y
Converged?> —
Eom Iy

N

Calculate sensitivities w.r.t.0;; and p, ‘

Calculate sensitivities w.r.t.d
based on the projection function

|
Updated using the P

Figure 3. Flow chart of optimization procedure (LP meansdinprogramming).

Suitable moving limits are introduced to assure that thégtegriables do not change by more than 5-15% between
consecutive iterations. A new set of design varialdlesre obtained after each iteration, and the optimizationicoas
until convergence is achieved for the objective function.
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Figure 5. Result forw = 0.5, 8 = 0.0, r,, = 0.04mm andr,, = 0.1mm; a) Optimal topology; b) Material gradation
along3 direction; ¢) Deformed configuration of interpreted topto

Layers

6. Numerical Results

Examples are presented to illustrate the design piezoeleattuators using the proposed method. Once the idea
is to simultaneously distribute void, and FGM piezoelectro regions with predefined materials are specified in the
design domairs. For all examples, the FGM piezoelectric is composed ofqaézctric material (Carbonari et al. 2005)
and Aluminum, and the material gradation is constrainedhéd3tdirection. C ande are the elastic and piezoelectric
properties, respectively, of the medium. Theuvig’s modulus and Poisson’s ratio of Aluminum are equalitd@> Pa
and0.33, respectively. Two-dimensional isoparametric finite edas under plane-stress assumption are used in the finite
element analysis.

The amount of electric field applied to the design domain 8 BOmm (see Figure 4). The design domain for all
examples is shown in Figure 4 which was discretized into 500@ elements. The mechanical and electrical boundary
conditions are shown in the same figure. The FGM volume cain$tand piezoelectric material volume constraint in the
FGM are both equal t85%. The initial values of pseudo-densitieg; andpo; are equal td).15, and the optimization
problem starts in the feasible domain (all constraints8atl). The results are shown by plotting the average devesing.

The final actuator configuration for all results is obtaingdrierpreting FGM topology by doing a simple threshold of
pseudo-density value, ;.

The topology optimization problem was solved considering= 0.5. The § coefficient was set equal @0 and
0.0001 which means that the coupling constraint is not considerélds first case, and it is considered in the second case,
respectively. The obtained piezoelectric FGM topologiessiown in Figures 5(a) and 6(a), respectively. The materia
gradation in the FGM domain along tBalirection are shown in graphics of Figures 5(b) and 6(bpeesvely. Again, a
clear contrast among piezoelectric FGM topology and voidabe obtained in both cases. The corresponding deformed
configuration of interpreted topologies (considering 50thw) are shown in Figures 5(c) and 6(c), respectively. For
equal ta0.0 the piezoceramic is distributed in the upper and lower pdtise design domain, like in the previous example.
However, forg equal to0.0001 the piezoceramic is distributed in lower part. Table 1 déssrvertical displacement at
point A (see Figure 4) consideriri0V/mm applied to the piezoceramic finite elements, and the cogffiintor R,
which is the ratio between undesired (horizontal) and ddsfvertical) displacement. For the second case, a smaller
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Table 1. Vertical displacement at point A (500 V/mm appliaddl coupling factor ().

Piezoactuatorf uy(um) | ux(um) | Rx(%) | w | 8
Figure 5(c) 1.050 | 0.859 | 81.81 | 0.5| 0.0
Figure 6(c) | 0.819 | 0.003 | 0.37 |05 10 ¢

displacement was obtained due to lower valuavof0.5), however, forg equal t00.0001 a negligible coupling was
achieved.

7. Conclusions

A topology optimization formulation was proposed whicloals the search of an optimal topology of a FGM piezo-
electric structure for designing piezoelectric actugtmrsichieve certain specified actuation movements. Thishieeed
by the optimization problem by allowing the simultaneoustribution of void and FGM piezoelectric in the design
domain and applying an electric field as electrical exa@tatiThe composition of FGM piezoelectric may include non-
piezoelectric material. The adopted material model in drentilation is based on the density method and it interpslate
fictitious densities at each finite element based on pseedstiiks defined as design variables for each finite elenoat n
providing a continuous material distribution in the doma&ome 2D examples were presented to illustrate the pokentia
ity of the method. By controlling topology and material gatidn large displacement and low displacement coupling
constraint can be obtained.

In future work, the designed piezoelectric actuators wélrhanufactured in a mesoscale by using a spark plasma
sintering (SPS) machine, and displacement measuremdhkewionducted to verify the performance of these designs.
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