
Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

FUNCTIONALLY GRADED PIEZOELECTRIC SMART ACTUATOR
DESIGN USING A TOPOLOGY OPTIMIZATION APPROACH

Ronny Calixto Carbonari
ronny@usp.br

César Yukishigue Kiyono
ckiyono@gmail.com

Emílio Carlos Nelli Silva
ecnsilva@usp.br
Department of Mechatronics and Mechanical Systems Engineering,
Escola Politécnica da Universidade de São Paulo,
Av. Prof. Mello Moraes, 2231, 05508-900, São Paulo, SP, Brazil.

Abstract. Functionally Graded Materials (FGMs) possess continuous variation of material properties and are charac-
terized by spatially varying microstructures. Recently, the FGM concept has been explored in piezoelectric materialsto
improve properties and to increase the lifetime of piezoelectric actuators. Elastic, piezoelectric, and dielectric properties
are graded along the thickness of a piezoceramic FGM. Thus, the gradation of piezoceramic properties can influence
the performance of piezoactuators, and an optimum gradation can be sought through optimization techniques. How-
ever, the design of these FGM piezoceramics are usually limited to simple configurations. An interesting approach to
be investigated is the design of FGM piezoelectric mechanisms, which essentially can be defined as an FGM structure
with complex topology made of piezoelectric and non-piezoelectric materials that must generate output displacement and
force at a certain specified point of the domain and direction. This can be achieved by means of topology optimization
techniques. Thus, in this work, a topology optimization formulation that allows the simultaneous search for an optimal
topology of a FGM structure (made of piezoelectric and non-piezoelectric materials) in the design domain, to achieve
certain specified actuation movements, will be presented. The optimization problem is posed as the design of the FGM
structure that maximizes output displacements or output forces in a certain specified direction and point of the domain.
To provide realistic designs, the material gradation is constrained to one-dimension. The method is implemented based
on the "Solid Isotropic Material with Penalization" (SIMP)model where fictitious densities are interpolated in each fi-
nite element, providing a continuum material distributionin the domain. A gradient control for material gradation was
implemented allowing us to analyze the influence of propertygradation in the actuator performance. The optimization
algorithm employed is based on sequential linear programming (SLP). Two types of FGM piezoelectric mechanisms were
designed to demonstrate the usefulness of the proposed method.
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1. INTRODUCTION

Piezoelectric micro-tools offer significant promise in a wide range of applications involving nanopositioning and
micromanipulation (Ishihara et al. 1996). For instance, piezoelectric positioners are applied to atomic force microscopes
(AFM) and scanning tunneling microscopes (STM) for positioning the sample or the probe, respectively (Indermuhle
et al. 1995); piezoelectric microgrippers are applied to micromanipulation (Pérez et al. 2005), cell manipulation and
microsurgery (Menciassi et al. 2003). The micro-tools usually consist of multi-flexible structures actuated by two or
more functionally graded piezoceramic devices that must generate different output displacements and forces at different
specified points of the domain and on different directions. Thus, the development of these piezoelectric micro-tools require
the design of actuated compliant mechanisms (Howell 2001) that can perform detailed specific movements. Although the
design of such micro-tools is complicated due to the coupling between movements generated by various piezoceramics,
it can be realized by means of topology optimization (Canfield and Frecker 2000; Carbonari et al. 2005) which even
allows the simultaneous search for an optimal topology of a flexible structure as well as the optimal positions of the
piezoceramics in the design domain, to achieve certain specified actuation movements (Carbonari et al. 2007).

Functionally Graded Materials (FGMs) are special materials that possess continuously graded properties and are char-
acterized by spatially varying microstructures created bynonuniform distributions of the reinforcement phase as well as
by interchanging the role of reinforcement and matrix (base) materials in a continuous manner (Miyamoto et al. 1999).
The smooth variation of properties may offer advantages such as local reduction of stress concentration and increased
bonding strength.

Topology optimization is a powerful structural optimization method that seeks an optimal structural topology design
by determining which points of space should be solid and which points should be void (i.e. no material) inside a given



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

∆ 

1

3

flexible structure

layer

property
non-PZT PZT

?

E

(a)

piezoceramics

flexible structure

?
+

∆ layer

?
property

FGM
=}

?

(b)

Figure 1. (a) Conventional FGM piezoactuator design (FGM piezoceramic position is fixed); (b) FGM piezoelectric
device design considering the simultaneous distribution of FGM piezoceramic and void in the design domain.

domain (Bendsøe and Sigmund 2003). However, the binary (0 − 1) design is an ill-posed problem and a typical way to
seek a solution for topology optimization problems is to relax the problem by defining a material model that allows for
intermediate (composites) property values. In this sense,the relaxation yields a continuous material design problemthat
no longer involves a discernible connectivity. Typically,it is an improperly formulated (ill-posed) topology optimization
problem for which no optimum solution exists (0-1 design). Atopology solution can be obtained by applying penalization
coefficients to the material model to recover the 0-1 design (and thus, a discernible connectivity), and some gradient
control of material distribution, such as a filter for example (Bendsøe and Sigmund 2003; Belytschko et al. 2003).

The relaxed problem is strongly related to the functionallygraded material (FGM) design problem, which essentially
seeks a continuous transition of material properties (Miyamoto et al. 1999). In contrast, while the0 − 1 design problem
does not admit intermediate values of design variables, theFGM design problem does admit solutions with intermediate
values of the material field.

Due to the attractive possibilities of tailoring the material properties, some researchers have applied optimization
methods to design FGMs (Turteltaub 2002b). The applicationof a generic optimization method to tailor material property
gradation has been proposed by Paulino and Silva (Paulino and Silva 2005) who applied topology optimization to solve
the problem of maximum stiffness design.

Recently, the concept of functionally graded materials (FGMs) has been explored in piezoelectric materials to improve
their properties and increase the lifetime of piezoelectric actuators (Almajid et al. 2001). Usually, elastic, piezoelectric,
and dielectric properties are graded along the thickness ofan FGM piezoceramic. Previous studies (Almajid et al. 2001;
Zhifei 2002) have shown that the gradation of piezoceramic properties can influence the performance of piezoactuators,
such as generated output displacements. This suggests thatoptimization techniques can be applied to take advantage of
the property gradation variation to improve the FGM piezoactuator performance.

However, the design of these FGM piezoactuators are usuallylimited to simple shapes. An interesting approach to
be investigated is to mix the concept of FGM with micro-tools, that is, to design FGM piezoelectric mechanisms which
essentially can be defined as a FGM structure with complex topology made of piezoelectric and non-piezoelectric material
that must generate output displacement and force at a certain specified point of the domain and direction. This can be
achieved by using topology optimization method.

Thus, the objective of this work is to develop a topology optimization formulation that allows the simultaneous dis-
tribution of void and FGM piezoelectric material (made of piezoelectric and non-piezoelectric material) in the design
domain, to achieve certain specified actuation movements. Two design problems are considered simultaneously: the
optimum design of the piezoceramic property gradation in the FGM piezoceramic domain,and the design of the FGM
structural topology. Figure 1 illustrates the concept of FGM piezoelectric devices proposed in this work.

The optimization problem is posed as the design of a FGM structure, as well as its property gradation that maximizes
output displacement or output force in a specified directionand point of the domain, while minimizing the effects of
movement coupling (Carbonari et al. 2005). The method is implemented based on the solid isotropic material with pe-
nalization (SIMP) model where fictitious densities are interpolated at each finite element, providing a continuous material
distribution in the domain. The optimization algorithm employed is based on sequential linear programming (SLP) (Van-
derplaatz 1984; Hanson and Hiebert 1981). Since the position of piezoceramic are not known Şa prioriŤ an independent
electrical excitation is considered for each finite elementwhich is equivalent to a constant applied electric field (Carbonari
et al. 2007). This decouples the electrical and mechanical problem, however, the dielectric properties are not taken into
account in the design problem.
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Thus, this formulation contributes to increase the design flexibility of these devices allowing the design of novel types
of FGM piezoactuators for different applications. Two FGM piezoelectric mechanisms were designed to demonstrate the
usefulness of the proposed method. An one-dimensional constraint of the FGM gradation is imposed to provide more
realistic designs. The use of topology optimization for thedesign of FGM piezoactuators is a novel approach that has the
potential to dramatically broaden the applied range of suchdevices, especially in the field of smart structures.

2. Finite Element FGM Piezoelectric Modeling

The micro-tools considered here operate in quasi-static orlow-frequency modes (inertia effects are neglected). Whena
non-piezoelectric conductor material and a piezoceramic material are distributed in the piezoceramic domain, the electrode
positions are not known “a priori”, as discussed ahead. Thus, the electrical excitation is given by an applied electric field
(Carbonari et al. 2007) (∇φ=constant). In this case, all electrical degrees of freedomare specified in the FE problem, and
thus the linear finite element (FE) matrix formulation of theequilibrium equations for the piezoelectric medium is given
by (Lerch 1990):

[

Kuu Kuφ

Kt
uφ −Kφφ

] {

U

Φ

}

=

{

F

Q

}

=⇒ [K] {U} = {Q} (1)

whereKuu, Kuφ, andKφφ denote the stiffness, piezoelectric, and dielectric matrices, respectively, andF, Q, U, and
Φ are the nodal mechanical force, nodal electrical charge, nodal displacements, and nodal electric potential vectors,
respectively (Lerch 1990).

In the case of FGM piezoceramics, the properties change continuously inside the piezoceramic domain, which means
that they can be described by some continuous function of position x in the piezoceramic domain, that is:

C = C (x) ; e = e (x) ; ǫS = ǫS (x) (2)

From the mathematical definitions ofKuu, Kuφ, andKφφ, these material properties must remain inside the matrices
integrals and be integrated together by using the graded finite element concept (Kim and Paulino 2002) where properties
are continuously interpolated inside each finite element based on property values at each finite element node. An attempt
to approximate the continuous change of material properties by a stepwise function where a property value is assigned
for each finite element may result in less accurate results with undesirable discontinuities of the stress and strain fields.
Therefore, the mechanical and electrical problems are decoupled, and only the upper problem of Eq. 1 needs to be directly
solved. Essentially, the optimization problem is based on the mechanical problem. As a consequence, the dielectric
properties do not influence the design.

3. Design Problem Formulation

For topology optimization (Carbonari et al. 2005) numerical implementation, we are considering the continuous
distribution of the design variable inside the finite element by interpolating it using the FE shape functions. In this case,
the design variables are defined for each element node. We areinterested in a simultaneous distribution of void, and
FGM piezoelectric material in the design domain, and thus, the following material model is proposed based on an simple
extension of the SIMP (“Solid Isotropic Material with Penalization”) model (Carbonari et al. 2007):

C = ρpc1

1
[ρ2C1 + (1 − ρ2)C2] + (1 − ρpc1

1
)Cvoid (3)

e = ρpc1

1
[ρ2e1 + (1 − ρ2) e2] , (4)

whereρ1 andρ2 are pseudo-density function representing the amount of material at each point of the domain. These
pseudo-densities can assume different values at each finiteelement node. Thus,ρ1 = 1.0 denotes FGM material andρ1

= 0.0 denotes void, andρ2 = 1.0 denotes piezoelectric materialtype 1 or ρ1 = 0.0 denotes piezoelectric materialtype 2.
C ande are stiffness and piezoelectric tensor properties, respectively, of the material. The tensorsCj andej are related
to the stiffness and piezoelectric properties for piezoelectric material type j (j = 1, 2), respectively.Cvoid is the tensor
related to void stiffness property. Eventually, the piezoelectric materialtype 2 can be substituted by the flexible structure
material (non-piezoelectric material, such as Aluminum, for example), and in this casee2 = 0. These are the properties
of basic materials that are distributed in the piezoceramicdomain. The dielectric properties are not considered because a
constant electric field is applied to the design domain as electrical excitation, this approach decouples the electrical and
mechanical problems eliminating the influence of dielectric properties in the optimization problem.pc1 is a penalization
factor to recover the discrete design, and its value varies from 0 to 3. For a discretized domain into finite elements, Eq. 3
and 4 are considered for each element node, and the material properties inside each finite element are given by functions
of x ((ρ1 (x) and (ρ2 (x)). This formulation leads to a continuous distribution of material along the design domain. Thus,
by finding the nodal values of the unknownρ1 (x) and (ρ2 (x) function, we are indirectly finding the optimum material
distribution functions, which are described by Eq. 2.
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Figure 2. Load cases for calculation of: generated output displacement, mean compliance and generated normal displace-
ment. Here,Ei = −∇φi denotes the electrical field associated with load casei.

In this work, the piezoceramic electrodes are not known “a priori”, and, thus, an electric field is applied as electrical
excitation. Essentially, the objective function is definedin terms of generated output displacements for a certain applied
electric field to the design domain. Consideringdi andφi the electrical displacement and electrical potential related to
load casei, respectively, the generated output displacement is defined by (in this work,E1 is prescribed) (Carbonari et al.
2007):

uout1 =

∫

Γt2

t2u1dΓ +

∫

Γd2

d2φ1
dΓ =

∫

Γt2

t2u1dΓ (5)

asd2 = 0 in this problem. The load cases considered for calculation of generated output displacement are shown in
instances 2(a) and 2(b) of Figure 2.

However, the optimum solution obtained considering only the maximization of generated output displacement may be
a structure with very low stiffness. The piezoactuator mustresist to reaction forces (in regionΓt2

) generated by a body
that the piezoactuator is trying to move or grab. Therefore,the mean compliance must be minimized to provide enough
stiffness (see Figure 2(c)). The mean compliance is calculated by considering the load case described in case 2(c) of Figure
2 where a tractiont3 = −t2 is applied to regionΓt2

and the electric field is kept null inside the medium (E3 = 0). The
displacement coupling constraint is obtained by minimizing the absolute value of the corresponding undesired generated
displacement that is, a displacement normal to the desired displacement, which is calculated by using Eq. 5, however,
considering a load case described in case 2(d) of Figure 2 instead, where a tractiont4, normal tot2, is applied to region
Γt2

(Carbonari et al. 2007).
To properly combine the desired output displacement maximization, mean compliance maximization, and coupling

constraint minimization, a multi-objective function is constructed to find an appropriate optimal solution that can incorpo-
rate all design requirements. The following multi-objective function is proposed to combine all these optimization aspects
(Carbonari et al. 2007):

F (ρ1, ρ2) = w ∗ ln [uout1 ] −
1

2
(1 − w) ln

[

L3(u3, φ3)
2 + β u2

normal

]

, (6)

wherew is a weight coefficient (0 ≤ w ≤ 1). The coefficient w allows control of the contributions of generated output
displacement, mean compliance, and displacement couplingin the design. Accordingly, the final optimization problem is
defined as:

Maximize: F (ρ1, ρ2)
ρ1(x), ρ2(x)
subject to: Equilibrium equations for different load cases

0 ≤ ρ1 ≤ 1; 0 ≤ ρ2 ≤ 1;
Θ1(ρ) =

∫

S
ρ1dS − Θ1S ≤ 0; Θ2(ρ) =

∫

S
ρ2dS − Θ2S ≤ 0

(7)
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HereS denotes the design domain,Θ1 is the volume of this design domain, andΘ1S is an upper-bound volume
constraint defined to limit the maximum amount of material used to build the FGM coupling structure. Moreover,Θ2

is the volume related toρ2, andΘ2S is an upper-bound volume constraint defined to limitρ2 values when optimizing
the FGM gradation function. The other constraints are equilibrium equations for the piezoelectric medium considering
different load cases. The equilibrium equations are solvedseparately from the optimization problem. They are stated in
the problem to indicate that, whatever topology is obtained, it must satisfy the equilibrium equations.

4. Numerical Implementation

The continuum distribution of pseudo-densitiesρ1 (x) andρ2 (x) are given by the functions

ρ1 (x) =

nd
∑

I=1

ρ1INI (x) ; ρ2 (x) =

nd
∑

I=1

ρ2INI (x) , (8)

whereρ1I andρ2I are nodal pseudo-densities,NI is the finite element shape function that must be selected to provide
non-negative values of the design variables, andnd is the number of nodes at each finite element. The pseudo-densities
ρ1I andρ2I can assume different values at each node of the finite element.

Due to the definition of Eq. 8, the material property functions (Eqs. 3 and 4) also have a continuum distribution inside
the design domain. Thus, considering the mathematical definitions of the stiffness and piezoelectric matrices of Eq. 1,
the material properties must remain inside the integrals and be integrated together by means of the graded finite element
concept (Kim and Paulino 2002). The finite element equilibrium Eq. 1 is solved considering 4-node isoparametric finite
elements under either plane stress or plane strain assumptions.

When a non-piezoelectric conductor material (usually a metal, such as Aluminum) is considered in Eqs. 3 and 4, a
relevant problem to be solved is how to define the piezoceramic electrodes. If a non-piezoelectric conductor material (for
example, Aluminum) is distributed in the piezoceramic design domain, we cannot define “a priori” the position of the
piezoceramic electrodes because we do not know where the piezoceramic is located in the design domain. To circumvent
this problem, we consider the electrical problem independently for each finite element of the piezoceramic domain by
defining a pair of electrodes at each finite element, that is, each finite element has its own electrical degrees of freedom.

Thus, each finite element has 4 electrical degrees of freedomgiven by [φa, φb, φc, φd] (nodes are ordered counter-
clockwise starting from the upper right corner of each finiteelement) considering that one of the electrodes is grounded.
Electrical voltageφ0 is applied to the two upper nodes, and thus, the four electrical degrees of freedom are prescribed at
each finite element, as follows ([φ0, φ0, 0, 0]) (Carbonari et al. 2007). This is equivalent to applying a constant electrical
field along the3-direction in the design domain. In this case, all electrical degrees of freedom are prescribed in the FE
problem. By means of the FE matrix formulation of equilibrium, Eq. 1, the discretized form of the optimization problem
given by Eq. 7 is restated as:

Maximize: F (ρ1I , ρ2I)
ρ1I , ρ2I

subject to: {F3} = −{F2} (Γt3
= Γt2

)

{F4}
t
{F2} = 0 (Γt4

= Γt2
)

[K1] {U1} = {Q1} [K2] {U2} = {Q2}
[K3] {U3} = {Q3} [K2] {U4} = {Q4}
0 ≤ ρ1I ≤ 1; 0 ≤ ρ2I ≤ 1 I = 1..Ne
∑NE

I=1

∫

SI
ρ1dSI − Θ1S ≤ 0

∑NE
J=1

∫

SJ
ρ2dSJ − Θ2S ≤ 0

(9)

where the integrals in the volume constraint expressions are evaluated by using Gauss quadrature (4 points) and consid-
ering Eq. 1. The parameterNe is the number of nodes in the design design domain. Moreover,NE denotes the number
of elements in the design domain. The matrices[K1] and[K3] are reduced forms of the matrix[K2] considering non-zero
and zero specified voltage degrees of freedom (applied electric field) at the piezoceramic domain, respectively. The initial
domain is discretized by finite elements and the pseudo-densities (ρ1andρ2) are the values ofρ1I andρ2J are defined at
each finite element node in the design domain.

5. Material Gradation Control

CAMD approach ensures the continuous material distribution across elements. However, it does not provide a gen-
eral control of the gradient of material distribution. To achieve a meshindependent control of the gradient of material
distribution, we introduce a new layer of design variables and use a projection function to obtain the material densities at
nodes. This concept of using nodal design variables and projection functions has been developed in (Guest, Prevost, and
Belytschko 2004). This concept will be applied on top of the CAMD in this paper.
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Let d1n andd2n denote all design variables associated with nodesρ1I and layersρ2J , respectively. Assume that the
required change of material density must occur over a minimum length ofrmin. ρ1I andρ2J can be obtained fromdn

using a projection function defined by Guest et al. (2004), asfollows:

ρn = f(dn), (10)

wheref is the projection function defined as follows.

ρi = f(dj) =

∑

j∈Sj
djw(xj − xi)

∑

j∈Sj
w(xj − xi)

, (11)

andSi is the set of nodes in the domain of influence of nodei (Ωl), which consists in a circle of radiusrmin and center at
nodei. The weight functionw is defined as follows.

w (xj − xi) =

{ rmin−rij

rmin
if xj ∈ Ωl

0 otherwise
, (12)

rij is the distance between nodesj andi

rij = ‖xj − xi‖. (13)

The topology optimization problem definition is revised as follows.

Maximize: F (dn)
dn

subject to: {F3} = −{F2} (Γt3
= Γt2

)

{F4}
t
{F2} = 0 (Γt4

= Γt2
)

[K1] {U1} = {Q1} [K2] {U2} = {Q2}
[K3] {U3} = {Q3} [K2] {U4} = {Q4}
∑NE

I=1

∫

SI
d1ndSI − Θ1S ≤ 0

∑NE
J=1

∫

SJ
d2ndSJ − Θ2S ≤ 0

0 ≤ d1n ≤ 1;
0 ≤ d2n ≤ 1;

(14)

The mathematical programming method called Sequential Linear Programming (SLP) is applied to solve the optimiza-
tion problem (Hanson and Hiebert 1981; Vanderplaatz 1984).The linearization of the problem at each iteration requires
the sensitivities (gradients) of the multi-objective function and constraints in relation todn.

A flow chart of the optimization algorithm describing the steps involved is shown in Figure 3. The software was
implemented using the C language.

Generate random 
design variables d

Obtain nodal densities  ρ1I and ρ2L 
from d (using a projection function)

Calculation of Objective Function and Constraints

Converged?

Update d using the PL

END
Y

N

F1

Initialization and
Data Input

Calculate sensitivities w.r.t. ρ1I and ρ2L

Calculate sensitivities w.r.t. d 
based on the projection function

Figure 3. Flow chart of optimization procedure (LP means linear programming).

Suitable moving limits are introduced to assure that the design variables do not change by more than 5–15% between
consecutive iterations. A new set of design variablesdn are obtained after each iteration, and the optimization continues
until convergence is achieved for the objective function.
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Figure 5. Result forw = 0.5, β = 0.0, rρ1
= 0.04mm andrρ2

= 0.1mm; a) Optimal topology; b) Material gradation
along3 direction; c) Deformed configuration of interpreted topology.

6. Numerical Results

Examples are presented to illustrate the design piezoelectric actuators using the proposed method. Once the idea
is to simultaneously distribute void, and FGM piezoelectric no regions with predefined materials are specified in the
design domainS. For all examples, the FGM piezoelectric is composed of piezoelectric material (Carbonari et al. 2005)
and Aluminum, and the material gradation is constrained to the 3 direction. C ande are the elastic and piezoelectric
properties, respectively, of the medium. The Young’s modulus and Poisson’s ratio of Aluminum are equal to70 GPa
and0.33, respectively. Two-dimensional isoparametric finite elements under plane-stress assumption are used in the finite
element analysis.

The amount of electric field applied to the design domain is 500 V/mm (see Figure 4). The design domain for all
examples is shown in Figure 4 which was discretized into 5000finite elements. The mechanical and electrical boundary
conditions are shown in the same figure. The FGM volume constraint and piezoelectric material volume constraint in the
FGM are both equal to25%. The initial values of pseudo-densitiesρ1I andρ2I are equal to0.15, and the optimization
problem starts in the feasible domain (all constraints satisfied). The results are shown by plotting the average densityvalue.
The final actuator configuration for all results is obtained by interpreting FGM topology by doing a simple threshold of
pseudo-density valueρ1I .

The topology optimization problem was solved consideringw = 0.5. Theβ coefficient was set equal to0.0 and
0.0001 which means that the coupling constraint is not considered in the first case, and it is considered in the second case,
respectively. The obtained piezoelectric FGM topologies are shown in Figures 5(a) and 6(a), respectively. The material
gradation in the FGM domain along the3 direction are shown in graphics of Figures 5(b) and 6(b), respectively. Again, a
clear contrast among piezoelectric FGM topology and void could be obtained in both cases. The corresponding deformed
configuration of interpreted topologies (considering 500 V/mm) are shown in Figures 5(c) and 6(c), respectively. Forβ
equal to0.0 the piezoceramic is distributed in the upper and lower partsof the design domain, like in the previous example.
However, forβ equal to0.0001 the piezoceramic is distributed in lower part. Table 1 describes vertical displacement at
point A (see Figure 4) considering500V/mm applied to the piezoceramic finite elements, and the coupling factorRxy

which is the ratio between undesired (horizontal) and desired (vertical) displacement. For the second case, a smaller
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Figure 6. Result forw = 0.5, β = 0.0001, rρ1
= 0.04mm andrρ2

= 0.1mm; a) Optimal topology; b) Material gradation
along3 direction; c) Deformed configuration of interpreted topology.

Table 1. Vertical displacement at point A (500 V/mm applied)and coupling factor (Ryx).

Piezoactuator uy(µm) ux(µm) Ryx(%) w β
Figure 5(c) 1.050 0.859 81.81 0.5 0.0
Figure 6(c) 0.819 0.003 0.37 0.5 10−4

displacement was obtained due to lower value ofw (0.5), however, forβ equal to0.0001 a negligible coupling was
achieved.

7. Conclusions

A topology optimization formulation was proposed which allows the search of an optimal topology of a FGM piezo-
electric structure for designing piezoelectric actuators, to achieve certain specified actuation movements. This is achieved
by the optimization problem by allowing the simultaneous distribution of void and FGM piezoelectric in the design
domain and applying an electric field as electrical excitation. The composition of FGM piezoelectric may include non-
piezoelectric material. The adopted material model in the formulation is based on the density method and it interpolates
fictitious densities at each finite element based on pseudo-densities defined as design variables for each finite element node
providing a continuous material distribution in the domain. Some 2D examples were presented to illustrate the potential-
ity of the method. By controlling topology and material gradation large displacement and low displacement coupling
constraint can be obtained.

In future work, the designed piezoelectric actuators will be manufactured in a mesoscale by using a spark plasma
sintering (SPS) machine, and displacement measurements will be conducted to verify the performance of these designs.
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