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Abstract. Although buoyancy-driven flows in regular-shaped cavities have been widely investigated, little attention has 
been given to the natural convection in enclosures with irregular geometries, which arises in several practical 
engineering applications. This work presents a numerical study of natural convection in partially divided trapezoidal 
cavities representing industrial buildings, using an Element based Finite Volume Method (EbFVM). The effect of 
Rayleigh number as well as the height and position of a baffle inside the cavity will be investigated. In this procedure, 
quadrilateral elements are employed to discretize the governing equations which are solved simultaneously. The 
results are displayed in terms of average Nusselt number, isotherms and streamlines. 
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1. INTRODUCTION 
 

Natural-convection heat transfer in regular enclosures (rectangular, cylindrical, annulus) has been widely studied. 
However, buoyancy-driven flows in cavities of irregular geometry have not received the same attention, although such 
problems arise in many practical situations, such as solar heating and nuclear waste disposal. The non-linear nature of 
the governing equations associated with the irregular boundaries of the physical domain makes each solution specific to 
the corresponding configuration (Moukalled and Darwish, 2003). 

This work presents the solution of the natural convection in partially divided trapezoidal cavities, heated from the 
side. The governing equations are solved by the Element based Finite Volume Method (EbFVM) in conjunction with 
quadrilateral elements. This numerical scheme, developed by Raw (1985), combines the features of two others classic 
formulations: the Finite Volume Method (FVM) and the Finite Element Method (FEM). In this approach, the physical 
domain is broken up into quadrilateral elements and each element is divided into four sub-control volumes. The 
conservation equations are then integrated over each sub-control volume. Also, the transport equations are solved 
simultaneously. 

The results for several Rayleigh numbers are presented in terms of average Nusselt number, isotherms and 
streamlines. The effect of a baffle in the heat transfer process is also considered. Finally, these results are compared to 
those obtained by Moukalled and Darwish (2003) using a traditional control-volume method. 
 
2. MATHEMATICAL MODEL 
 

The governing equations of mass, momentum and energy, representing a two-dimensional, incompressible and 
laminar flow, using the Einstein notation, are, respectively, given by  
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where i and j range from 1 to 2, ρ is the specific mass, μ is the viscosity, uj are the Cartesian components of velocity 
vector, p is the thermodynamic pressure, T is the temperature, sui and sT are, respectively, the source terms of the 
momentum and energy equations. For the natural convection problem, using the Boussinesq approximation, the source 
term of the momentum equation is given by: 
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where β is the coefficient of thermal expansion of fluid, T  is the reference temperature (the value T = 0.5 has been 
adopted) and g is the gravitational acceleration. 

 
3. NUMERICAL METHODOLOGY- THE ELEMENT BASED FINITE VOLUME METHOD (EbFVM) 
 

The fundamentals of the Element based Finite Volume Method (EbFVM) are now presented. Further details can be 
found in Raw (1984), Raw and Schneider (1986), Souza (2000) and Araújo (2004). As it was discussed earlier, this 
methodology solves the transport equations simultaneously, combining the features of the Finite Volume Method 
(FVM) and the Finite Element Method (FEM). The algebraic equations are obtained through the application of the 
conservation laws to an appropriate control volume. Also, the scheme has the ability to describe complex geometries, 
employing unstructured grids. 
 
3.1. Discretization of the physical domain 
 

The solution domain is divided into smaller domains, called finite elements, which are irregular quadrilaterals. 
Nodes are located at every element corner and all the problem unknowns (Cartesian components of velocity vector, 
pressure and temperature) are stored at these nodes. A local, non-orthogonal coordinate system s-t is defined within 
each element, which is dealt with in isolation. The s and t coordinates range from -1 to 1, and the nodes are numbered 1 
to 4 as shown in Fig. 1. 
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Figure 1. Element definition. 

 
The element is called “isoparametric” since the same functions are used to interpolate physical and geometric 

information within the element. Using this idea, any variable inside the element can be determined by 
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where Φ represents a generic variable, Φi is its value at the i-node of the element and the Ni(s, t) functions, called shape 
functions, are given by 
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The derivatives of Φ in terms of the global coordinates x and y are defined as 
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where, 
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and J is the Jacobian of the transformation between the x-y and s-t systems. The expression of J is given by 
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The expressions for the derivatives of the shape functions in terms of s and t are obtained directly from the Eq. (6) to 

(9). 
In order to establish the system of algebraic equations, a control volume is created for each node. Thefore, the s = 0 

and t = 0 lines of the elements surrounding each node are chosen as the volume edges (Fig. 2). 
 

Eixo t = 0t = 0 axis
Volume de controleControl volume 
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Figure 2. Control volume definition. 
 

Each element contains four control volumes quadrants from four different control volumes, called sub-control-
volumes (SCV), which can be seen in Fig. 3a. The discretization of the governing equations requires that several 
integrations be performed over the control volume surface. These integrals are approximated at the midpoint of the line 



segments that define the control volume contour (Fig. 3b). The line segments are called sub-surfaces (SS) and their 
midpoints are referred as integration points (ip’s). 
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Figure 3. a) Sub-control-volume definition. b) Integration point definition. 

 
3.2. Discretization of the governing equations 
 

A briefly description of the discretization process of the governing equations is now presented. The x-momentum 
equation is used, and only the SCV1 is considered, which has two sub-surfaces, SS1 and SS4 (Fig. 3a). The notation 
system employed is that all node variables are upper case and all integration point variables are lower case. The first 
superscript denotes the equation type (u, for the x-momentum equation, for example), the second one identifies the 
variable type the coefficient is multiplying. The superscripts c, d, t and s refer to, respectively, the convective, diffusion, 
transient and source terms, while the first subscript denotes the SCV number and the second one, the node or integration 
point number the variable is multiplying (depending on the way its symbol is written, upper or lower case). 

Integrating Eq. 2 over a control volume and using the Gauss theorem for the advective term the following equation 
arises:  
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where is the outward normal vector to the control sub-surface. The x-momentum equation arises when    
i = 1 and taking the SVC 1 (Fig. 3), for instance, gives 
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The superscript “*” in Eq. (18) indicates that the corresponding term is evaluated at the previous iteration. The 

convective and diffusive fluxes are evaluated at the integration points 1 and 4 (Fig. 3b). The diffusive term at ip1 is 
given by 
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Adding to Eq. (19) a similar term for the SS4 and representing the sum in the compact form yields 
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The pressure term is given by 
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Finally, putting all together Eqs. (16) through (21), into Eq. ( 15), an “equation” for the SCV1 is derived 
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The all four sub-control-volume equations taken together can be written in a matrix form as: 
 
[ ]{ } [ ]{ } [ ]{ } [ ]{ } { } { }usutuppuucuvduuduut BBpauaVAUAA +=++++ &         (23) 
 

where the brackets designate a square matrix and the braces a column vector. 
The values of the horizontal velocity component (u) and the pressure (p) at the integration points can be expressed in 

terms of their nodal values using interpolation functions, which are algebraic approximations to the differential equation 
for the mentioned variables. Using matrix notation, u and p at the integration points can be written as 
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{ } [ ]{ }PCCp pp=             (25) 
 
Inserting Eqs. (24) and (25) into Eq. (23) yields: 
 
[ ]{ } [ ]{ } [ ]{ } { }uupuvuu RPEVEUE =++ &           (26) 
 
In Eq. (26), each row in the matrix indicates a sub-control-volume, and each column represents a node. Moreover, 

this equation represents the discretization of a portion of a control volume (that is why the symbol  was employed). 
The final equation for the control volume is derived adding all of its portions (i. e. when the elements surrounding the 
control volume in question are assembled). 

=&

 
4. PHYSICAL MODEL OF THE CAVITY 
 

The trapezoidal enclosure under consideration is shown schematically in Fig. 4. The width of the cavity (L) is 4 
times the height (H) of the shortest vertical wall. The inclination of the top of the cavity (θ) is fixed at 15º. The baffle 
thickness (Wb) is equal to L/20 and its location (Lb) is L/3. Two configurations were studied: one with no baffle, and 
another partially divided (baffle height Hb = 2H*/3, where H* is the height of the cavity at the location of the baffle). 

The temperatures of the shortest and longest vertical walls are set to 1 and 0, respectively. This condition is called 
buoyancy-assisting mode, once the height of the cavity increases in the direction of the rising fluid. The inclined and 
horizontal walls are insulated. 
 



 

H 
Lb

Hb

θ 

Wb

L 
 

Figure 4. Physical domain. 
 

The confined fluid is air, which properties were evaluated at Pr = 0.7. Rayleigh number equal to 103 and 104 were 
considered, based on the height of the shortest vertical wall (H) and on the temperature difference between the vertical 
walls (ΔT = 1). The ratio between the thermal conductivity of the baffle and the advective fluid is fixed at 2, in order to 
simulate a poorly conducting divider. 

 
5. SOLUTION PROCEDURE 
 

For all the configurations studied, unstructured grids with nodes clustered closely to the vertical walls were 
employed, as can be seen in Fig. 5b. 

 

  
(a) (b) 

 
Figure 5. An unstructured grid with 3980 elements and 4113 nodes employed: a) the whole domain. b) zoom close 

to the short vertical wall. 
 
The number of nodes was over 4,000 for all configurations analyzed, about the same used by Moukalled and 

Darwish (2003) using structured meshes. They employed a 68 x 62 structured with concentrated lines close to the 
boundaries of the cavity. 

The baffle region was treated as infinitely viscous fluid (specified numerically as a very large value), which led to 
zero velocities in this area (Patankar, 1980). 

The solution convergence was considered achieved when urε  and pε < 10-4, which are calculated by, 
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where * denotes previous iteration and N is the total number of nodes. The velocity and pressure fields were obtained 
simultaneously, after what the temperature field was solved. 
 
6. RESULTS 
 

Figures 6 and 7 present the isotherms and streamlines in the non-partitioned enclosure. There is a good agreement 
with the results obtained by Moukalled and Darwish (2003). At low Ra (103), isotherms are uniformly distributed over 
the domain (Fig. 6a and 6b), implying weak advection effects. As Ra increases, isotherms become more distorted, (Fig. 
6c and 6d), indicating dominant convection. The flow for the investigated Raleigh, consists of a recirculating eddy as 
can be seen in Fig. 7. 
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(c) (d) 
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Figure 6. Isotherms in a non-partitioned cavity. a) and c) Present work. b) and d) Moukalled and Darwish (2003). 
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Figure 7. Streamlines in a non-partitione cavity. a) and c) Present work. b) and d) Moukalled and Darwish (2003). 

 
The effect of the baffle on the flow patterns and temperature profiles can be seen in Figs. 8 and 9. Once again, the 

results present a very good agreement with those obtained by Moukalled and Darwish (2003). At low Ra values, 
variations in temperature are almost uniform over the domain, indicating a dominant conduction heat transfer mode 
(Fig. 8a and 8b). As Ra increases, advection becomes more important, thus and isotherms become more distorted (Fig. 
8c and 8d). The streamlines, due to the inserting of the baffle consists basically of two separated vortices (Fig. 9). 
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Figure 8. Isotherms in a partitioned cavity. a) and c) Present work. b) and d) Moukalled and Darwish (2003). 
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Figure 9. Streamlines in a partitioned cavity. a) and c) Present work. b) and d) Moukalled and Darwish (2003). 

 
 

Finally, the average Nusselt numbers along the hot and cold wall for all the configurations analyzed are displayed in 
Tab. 1. According to Moukalled and Darwish, 2003), the expression for the average Nusselt number is given by 
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k
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where l is the height of the shortest or longest vertical wall. From Table 1, it can be verified the average Nusselt 
numbers present an excellent agreement with those obtained by Moukalled and Darwish (2003). 

 
Table 1. Average Nusselt number values (Pr = 0.7). 

 
Configuration Ra Present work Moukalled and Darwish (2003) 

103 0.70 0.72 No-baffle 
104 2.40 2.48 
103 0.47 0.50 Baffle 
104 1.18 1.13 

 
7. CONCLUSIONS 

 
The problem of natural convection in a partially divided trapezoidal enclosure was solved through the Element 

based Finite Volume Method (EbFVM) in conjunction with unstructured quadrilateral grids. The momentum mass and 
energy equations were solved simultaneously for the primitive variables u, v, w, p, and T. The results, in terms of 
isotherms, streamlines and average Nusselt number, showed an excellent agreement with those obtained by Moukalled 
and Darwish (2003), using structured grids. 
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