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Abstract. We examine the problem of indentation of an isotropic hyperelastic membrane by a rigid indenter in the 

shape of a right circular cylinder with different caps. The contact between the membrane and the metal tube is 

assumed frictionless. The equilibrium equations are obtained through the Principle of Stationary Potencial Energy. 

Our basic assumption is that the constitutive response of the membrane is characterized by a strain-energy function, 

which can be Neo-Hookean, Mooney Rivilin. A parametric study comparing the behavior and the stresses for different 

geometries for both constitutve equations is performed. To validate the numerical model, an experimental procedure is 

done. To do the experimental study an aparatus was buildt: a circular ring, where the membrane is pluged, is fixed in a 

certain position, while a motor drives a mechanism that linearly displaces an indenter with a given speed. Attached to 

the indenter is a force gage and a LVDT to measure the displacement. Two mirrors make it possible to observe de 

deformation of the membrane in two planes. The agreement of results between experimental and numerical analysis is 

rather encouraging.  
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1. INTRODUCTION  

 

The penetration in membranes is a puzzling subject and its rupture by cavitation is very little studied. The possibility 

of rupture of the membrane requires special care in a great number of industrial processes. Its effective control or 

prevention becomes necessary for the protection of professionals of the medical area who use protective gloves and for 

a number of functions. The process of indentation of a membrane for rigid cylindrical objects is a classic example of the 

theory of unilateral restrictions, presented recently by Nadler (2006) and Steigmann (2007). Indentation of membranes 

has been subject of some recent articles Gianakoupolus (2006), Yan (2007) and Sampati (2006), but there is lack of 

experimental studies to testify the theoretical formulations that model the membrane behavior.  

This research presents the numerical, analytical and experimental behavior of a circular flat membrane subjected to 

the transversal puncture by a cylindrical circular indenter. The material of the membrane is considered as homogenous, 

isotropic and hiperelastic, and is modeled as being of the Neo-Hookean type. The equilibrium equations and boundary 

conditions were obtained through the Principle of Stationary Potential Energy. 

This is the first step of a project that will consider in its continuity the penetration of the indenter and cavitation. The 

study, reported in this paper, stops as the tangent to the lateral surface of the membrane at the external contact point 

becomes vertical. Only after this limit the penetration begins. 

 

2. NUMERICAL FORMULATION 
 

It is studied the behavior of a homogeneous flat circular membrane of radius R2, under the action of cylindrical 

indenter with radius R1 acting transversally in the center of the membrane. The membrane in question is considered 

constituted of a homogeneous, isotropic and incompressible material, behaving in a way that it can be considered made 

of a Neo-Hookean material. The problem is divided in two steps. In the first step the membrane, of uniform thickness h, 

deforms itself out of its plane taking the form of a trunk of cone closed in the superior part, R1 and R 2 being the upper 

and lower radius, respectively, Fig. 1. This process continues until the superior part of the cone trunk arrives at an 

altitude limit, Z1
*
. In this moment the tangent to the curvilinear membrane surface is vertical. After this, if the action of 

the indenter proceeds, the penetration process starts when part of the membrane takes the form of the lateral surface of 

the indenter. Only the indentation is being considered in this paper. The contact at this first step is considered 

frictionless.  

Despite the equations, that describe this type of problem, to be highly not linear, being solved only through 

numerical methods like finite methods of numerical integration (which transform the boundary value problem into a 

initial value problem), sometimes it is possible to develop an analytical formulation.  

The independent variable is the radius of the undeformed membrane
2R<ρ<0 . 
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Figure 1. Membrane in the configurations (a) undeformed and (b) deformed. 

 

To model the problem, the undeformed membrane was divided in two regions, which were studied independently 

along the two following stages. The inner region of radius b will cover the top of the trunk of cone (stage 1); the outer 

region will result in the spatial deformed membrane: 

 

• Stage 1 – Considers the flat superior part of the trunk of cone. b<ρ<0 , where b is the intermediary 

undeformed radius between the two stages, 0)Z(ρandR<)R(ρ<0 1 = . 

• Stage 2 – Indentation: the indenter stretches the other region of the undeformed flat membrane (
2R<ρ<b ) 

out of its plane, until an imposed vertical displacement 1Z ; in this way, 0.=)Z(R   ,Z=Z(b) 21   

. 

The mathematical modeling of the problem uses the formulation of continuum mechanics for finite deformations, as 

considered by Green and Adkins (1970). To assemble the two stages together a compatibility equation is considered. 

 

2.1 First stage: 
 

In this stage the plane deformation of a region of radius b in this own plane is considered, Fig. 2.  

       
(a)     (b)  

 

Figure 2. Stage 1: Plane deformation of part of the membrane, (a) undeformed b<< ρ0  e (b) deformed 

1)(0 RR << ρ  and. .0)(Z =ρ  

 

The principal extensions 21 λ,λ  and 3λ , for the incompressible material, are: 
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In this way the first strain invariant I1, is:  

 

2

2
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The potential energy, π, by definition, is the difference between the elastic energy of deformation, E, and the 

work,τ , done by the external forces, T: 

 

π = E-τ             (3) 

 

The elastic energy of deformation, E, is obtained by the integration, over the undeformed volume, V, of the function 

density of energy of deformation, W, which corresponds to the elastic potential measured by unit of undeformed 

volume. 

 

∫
V

dVW=E             (4) 

 
Considering the incompressibility of the material, the function density of energy of deformation depends only on the 

first invariant I1. 

 

Neo–Hookean )3(IC=W 11 −  with C1=0.359628 MPa. 

 

The work,τ , resulting from the action of the external force, T, is:  

 

∫ − ]dρ1[R'T2= πτ           (5) 

 

Using Eq. 2 it is possible to obtain the Equilibrium equations and boundary conditions for this stage.  

[ ] 0'hWhW 'RR =− ρρ           (6) 

1R=(b)R      and      0=)0R(  

where:    .
)(

W
=W )(

∂

∂
 

 

2.2 Second stage: 
 

This stage considers the out of plane deformation of a flat circular annular membrane, 2Rb << ρ , until a prescribed 

vertical displacement Z1
*
, Fig. 2. 
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Figure 3. Stage 2. Membrane: (a) undeformed, 2Rb << ρ  e (b) deformed 21 RRR << , 
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The principal extensions 21 λ,λ  and 
3λ  are:  
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The first strain invariant of deformation, I1, is:  
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The work, τ , resulting from the action of the external force, F, is:  

 

∫− dρZ'F=τ            (9) 

 

Using Eq. 2 and Eq. 8 it is possible to obtain the Equilibrium Equations and boundary conditions for this stage 
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3. EXPERIMENTAL MODEL 
 

To measure the deformed membrane in three dimensions, an apparatus was build using a pair of mirrors fixed to a 

table, making possible the visualization of the sides of the membrane. In the central part of the mirror assembly the 

undeformed membrane is fixed through a circular ring on the table. The indenter is heaved with the help of a 
mechanical car jack driven by a speed controlled DC motor from a wiper. A 100 N load cell is mounted between the 

jack and the indenter and, its displacement is obtained with the help of a 30 cm LVDT (linear variable displacement 

transducer), Fig. 4.  

 

 
 

Figure 4` - Experimental apparatus.  
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4. RESULTS 

 

4.1. Analytical results 

 

Since the material is Neo-Hookean and there are large deformations the following assumption is considered: 
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In this way, using the equation of equilibrium and boundary conditions Eq. 6 with Eq. 1 (for stage 1), Eq. 10 with 

Eq. 8, (for stage 2); it is possible to find a closed form solution. 

For the Stage 1, b0 ≤≤ ρ : 
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For the Stage 2; 2Rb << ρ : 
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Considering the following compatibility equation one gets the solution Z1 

 

( )2

2

12
1

2stage

3

1stage

3

)b('R
b

R
)

b

R
ln(bZ

)b()b(

−







=

=λλ

         (14) 

 
In Fig. 5 it is possible to observe the analytical solution for the stresses at a maximum vertical displacement Z*=14 

mm. After this point, the penetration begins and R’ (b) =0. In Fig. 6 it can be seen how the stresses in both directions 

behave for different vertical displacements Z*. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5` Meridional (σ1) and Azimuthal (σ2) stresses with Z*=14 mm. 
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Figure 6. Variation of the Meridional (σ1) and Azimuthal (σ2) stresses with Z for Z*=14.0mm. 

 

4.2. Numerical results 

  

The numerical solution was done using the software of symbolic algebra Maple
©
, assembling a program to solve the 

equilibrium equations of the problem. To accomplish the inclusion of the boundary conditions in a suitable way it was 

necessary to use the shooting method coupled with the Newton Raphson Method. Since the problem is highly nonlinear 
the obtained analytical solutions were of fundamental importance to make the first guess of the boundary conditions. 

In Fig. 7 and Fig. 8 it is possible to observe the numerical solutions for the stresses at Z*=14.0 mm and at the 

maximum vertical displacement Z*=27.9 mm, respectively, after this the penetration starts. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7. Meridional (σ1) and Azimuthal (σ2) stresses with Z*=14 mm. 
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Figure 8. Meridional (σ1) and Azimuthal (σ2) stresses with Z*=27.9 mm. 
 

4.3. Experimental results 

 

Using the apparatus of Fig. 4, a rubber like membrane circular membrane, Dental Dam 5’’ x 5’’, with radius 
R2=51mm and thickness h=0.186mm was deformed several times by a circular cylindrical indenter of radius R1=4.7mm, 

as seen in Fig. 9 and 10. 

 

 

 
 

Figure 9. Upper view of the membrane in the apparatus. 
 

In Fig. 10 it is possible to observe the deformed membrane during loading and unloading. The relation between the 

applied force in Newton and the measured vertical displacements of the membrane is seen in Fig. 11. This behavior is 

dependent of the velocity of the loading. To avoid viscoelastic effects maximum displacement of the indenter is attained 

in a quite short time period. 
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Figure 10. Loading and unloading of the membrane. 
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Figure 11. Displacement Z (cm) in relation with force F (N). 
 

4.3. Comparison between experimental, analytical and numerical results. 

 

 
 

Figure 12. Relation of vertical displacement Z*(mm) with b (mm), the intermediary undeformed radius between the two 

stages, for the three cases: experimental, analytical and numerical.  

 

Figure 13 shows the analytical and the numerical stresses related with the prescribed displacement Z1
*
. It can be seen 

that for the same prescribed vertical displacement Z1
*, the maximum stress obtained in the analytical model is almost 

twice of the obtained with the numerical model. Although, both models achieve the same maximum stress, when R’=0, 

that is the maximum displacement before starting the penetration. 
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Figure 13. Relation of Z1*(mm) with b (mm), the intermediary undeformed radius between the two stages, for the 

tree results. 

5 – CONCLUSIONS 

 

The assumption of Eq. [11] used to obtain the analytical solution considering very large strains is not good for this 

part of the problem, because we are neglecting at some values of the coordinate ρ, 0.3 in the presence of 1. Even though 

the analytical solutions are of much importance to give a first approximation for the boundaries conditions to be used 
the shooting method. 

The stresses obtained analytically are twice the ones obtained numerically, although both models achieve the same 

maximum stress, when R’= 0, that is the maximum displacement before the start of penetration. 

The intermediary undeformed radius between the two stages, b, obtained numerically is half the one obtained 

analytically for the same prescribed vertical displacement, although the comparison between numerical and 

experimental behavior is rather good. 
As it was said before this is a first step to be completed before investigating penetration and cavitation, the results 

obtained here are quite encouraging.  
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