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Abstract. In this research we analyze free surface oscillations of a fluid in a cylinder tank excited by a non-ideal power 
source, an electric motor with limited power supply. We investigate the possibility of parametric resonance in this 
system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of 
parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic 
system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are 
carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams, 
Poincaré Maps, bifurcation diagrams and basins of attraction graphs to characterize the resonant vibrations of free 
fluid surface and the existence of several types of chaotic attractors during transition from regular to chaotic motion. 
Keywords: parametric resonance, non-ideal power sources, nonlinear dynamics, free-surface 

 
1. INTRODUCTION 
 

The study of resonance oscillations in a partially filled tank with liquid is important because there is several 
problems in industry associate with elevated water and liquefied natural gas tanks. In such cases, the motion of a liquid 
surface (sloshing) in the containers appears due to nonlinearity of the liquid inertia force. The characteristic of sloshing 
of liquid has been a concern in a number of engineering fields. Many papers examined this kind of nonlinear behavior 
of liquid sloshing in tanks that are excited horizontally and vertically (Abramson, 1966; Abramson, et al., 1966; Dodge, 
et al. 1965; Hutton, 1963; Ibrahim, et al. 2001; Ikeda and Murakami, 2005; Krasnopolskaya and Shvets, 1993 and 1994; 
Miles, 1976, 1984a, 1984b and 1984c, Miles and Henderson, 1990).  

In this paper we examine the free surface oscillations of liquid sloshing in a tank that is vertical excited by a non-
ideal power source, i.e, an electric motor with limited power supply. This excitation mechanism can generate chaotic 
response. We investigate that the dynamics of parametrically excited surface waves in the tank can reveal resonance in 
the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. 
Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented to 
characterize the resonant vibrations of free fluid surface and the existence of several types of chaotic attractors during 
transition from regular to chaotic motion. 

 
 
2. MATHEMATICAL MODEL 
 

We investigate wave dynamics on the surface of the fluid in the tank, vibrated by an electric motor with a limited 
power-supply. The system is modeled by a cylindrical tank of radius R partially filled with a liquid considered inviscid 
and incompressible (Fig. 1). A shaft of an electric motor and a crank mechanism connect with the platform of the tank. 

The crank turns by the angle σ and the base of the tank moves vertically with velocity
•

= )()( txtv , where 

)(cos)( 0 txtx σ=  and 
0x  is the crank arm. The free surface of the liquid is described by ),,( trz θη= . The fluid has a 

density ρ is assumed inviscid and incompressible. A detailed Lagrangian description of the fluid surface is performed 
by (Krasnopolskaya and Shvets, 1993, 1994), Miles (1976, 1984b). 

 
 
 



 
 

Figure 1.System composed by liquid in tank and electric motor. 
 

Summary, the description of the fluid surface is in the form of the sum of eigenmodes ),()(),,( θψηθη rttr nn=  
where the summation is carries out for identical indexes i and j, 
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In this equation we can characterize the amplitudes of the fundamental and secondary modes that represent an 

approximation of the oscillations of the free fluid surface. A detailed study connecting Eq. (1) with (2, below) was 
performed by Krasnopolskaya and Shvets (1993 and 1994) invoking the Lagrangian averaging procedure over time. 
These authors assume [ ] 2,1,)(()()(cos()( =+∝ ntsinqtp nnn στστη  for dominant modes, where pn, qn, are amplitudes.  

Following these authors, we can write the following system of evolution equations for these amplitudes of the dominant 
modes: 
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where τ is slow time (see Miles 1984a; Krasnopolskaya and Shvets, 1993, 1994), p1, q1, p2, q2 are amplitudes of the 
dominant modes, α is the coefficient of additional viscous damping forces acting on the liquid oscillations, and β is a 
tuning parameter, which measures the offset of frequencies. A and B are constant coefficients (Miles, 1984a) 
characterized by physical geometry, whose values depend on the diameter of the tank and the depth d (Fig.1) of the 
filled liquid in the tank. For example, if we assume that the tank is filled by fluid to the depth d > 3a, so, as shown by 
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Miles (1984b), A= 1.112 and B = -1.531.  E and M are the energy and the angular momentum respectively of the 
vibrations of the fluid in the fundamental models: 
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The last equation in the system (2) is obtained from the equation for the rotation of the shaft of the electric motor. We 
investigated the steady-state response and according Krononenko (1969), Krasnopolskaya and Shvets (1993 and 1994) 
we can write an approximation of the static characteristics of the engine. In this last equation N1 is a constant of the 
linear static performance curve of the motor, N2 is a function of the natural frequency of the fundamental of the free 
surface oscillations, and µ is a parameter in function of the natural frequency and physical characteristics of the motor. 
As we are interested in the steady-state response, the parameters (N1, N2, µ) are obtained of the static characteristic of 
the electromotor (Krononenko, 1969).  
 
3. NUMERICAL ANALISYS 
 

In this section we analyze the steady solutions of the equation system (2), which may represent equilibrium states, 
periodic, almost-periodic and chaotic solutions corresponding, respectively, in the five-dimensional phase-space (p1, q1, 
p2, q2, β) asymptotically to a point, a limit cycle, a limit torus and a chaotic attractor. 

In the parameter space (α, A, B, N2, N1, µ) of the equation system (2), numerical experiments were carried out to 
find the regions of existence of chaotic solutions, and to investigate the transition from regular to chaotic regimes. The 
computational numerical method of solution used was the fourth-order Runge-Kutta. The system of equations (2) has 
six parameters, which together with the initial conditions determine its behavior in the steady regimes. We our 
simulations we assume these parameters and initial conditions equal to α = 0.8, A = 1.112, B = -1.531, N2, = -0.25, µ  = 
4.5 and p1(0)=q1(0)=0.1, p2(0)=q2(0)=1.0, β(0)=0. The parameter N1 was varied to determine all possible classes of 
asymptotic trajectories (point, curve, torus, attractor). The magnitude this parameter determines the energy losses in the 
electromotor. Varying the values of the parameter N1, as for Krasnopolskaya and Shvets (1993 and 1994) the four main 
classes of steady-state regimes have been obtained. For example at N1 = 1.95 and integration time τ =1,000, the phase-
plane (p2,q2) projections of asymptotic trajectories are presented in Fig. 2 with the chaotic attractor has a two-cycle 
arrangement. 

 

 
 

Figure 2.Phase-plane (p2,q2) projections of the trajectories at N1 = 1.95. 
 
Figure 3 shows the several classes of asymptotic trajectories when we vary the parameter N1 for some values in the 

range from 0.1 to 5.0 with integration time of τ =500. We can see structures with several types of chaotic attractors 
during transition from regular to chaotic motion.  

 



 
 

Figure 3.Phase-plane (p2,q2) projections of the trajectories at N1: (a) 0.1; (b) 1.05; (c) 1.25; (d) 1,4; (e) 1.45; (f) 1.65; (g) 
1.80; (h) 1.95; (i) 5.0. 

 
In Fig. 3 we can see solid regions, for example, at N1 = 1.05 the structure of the attractor becomes solid, without 

windows. Fig.4 illustrates in detailed the phase-plane (p2,q2) of this type of chaotic attractor.  
 

 
 

Figure 4.Phase-plane (p2,q2) projections of the trajectories at N1 = 1.05. 
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Figure 5. Steady solutions in five-dimensional phase-space (p1, q1, p2, q2, β) in function of the time (N1 = 1.05). 

 
Figure 5 illustrates the steady solutions in five-dimensional phase-space (p1, q1, p2, q2, β) in function of the time. 

The variables p1 and p2, and q1 and q2 are duals varying approximately from –0.4 to 0.6, from –4 to 6, from –-0.2 to 0.2, 
and from –2 to 2, respectively. The amplitudes of variables p2, q2 are ten times the values of amplitudes of variables p1, 
q1. The variable β varying from –15.0 to 0, approximately. This similarity between the projections of the phase portraits 
both for regular and for chaotic attractors is associated with the symmetry of the equation system (2) with respect to the 
variables p2, q2 and p1, q1.  

The power spectrum log S versus the spectral frequency associated with the variable p2 of the chaotic attractor at N1 
= 1.05 and an integration time of τ =500 is displayed in Fig. 6. We can see some peaks in this power spectrum that has a 
broadband character. This is a distinguishing characteristic of a chaotic solution.  

 
 

 
 

Figure 6. Power spectrum of p2 at N1 = 1.05 
 

 
 



 
 

Figure 7. Power spectrum of p2 at N1 = 1.40 
 
Figure 7 shows the power spectrum of variable p2 of the chaotic attractor at N1 = 1.40 and an integration time of τ 

=500. We note that the structural differences of the attractors are captured by spectral characteristics. In this case, the 
spectrum has not a continuous broadband character in all range of frequencies. It has distinct troughs at middle 
frequencies. 

 
Now the Lyapunov exponents for this chaotic structure (N1 = 1.80) are determined. Fig. 8 shows the dynamics of 

Lyapunov exponents. The algorithm employed for this computation was proposed by Wolf et al. (1985). Figure 8 shows 
the dynamics of Lyapunov exponents until integration time of τ =200. The Lyapunov exponents for the five variables 
(p1, q1, p2, q2, β) converge approximately to λ1 = 0.63, λ2 = 0.07, λ3 = -0.42, λ4 = -2.0, and λ5 = -2.54, respectively. 

 

 
 

Figure 8. Dynamics of Lyapunov exponents at N1 = 1.05. 
 
The variation of the principal Lyapunov exponent for the various types of chaotic attractor is relevant because 

indicates an increase in the rate of divergence of nearby phase trajectories for more randomized chaotic attractors. For 
example, for some structures in Fig. 3, the principal Lyapunov exponent λ1 = 5.2 at N1 = 1.95. The value of λ1 = 9.1 at 
N1 = 1.80 and subsequently decreases to λ1 = 5.4 at N1 = 1.45. 

 
4. FINAL CONSIDERATIONS 

 
This paper presents an investigation the free surface oscillations of a fluid in a cylinder tank excited by a non-ideal 

power source. There is parametric resonance in this system modeled with five equations. As results we show the 
existence of several types of chaotic attractors during transitions from regular to chaotic motion. Some quantitative and 
qualitative characteristics of these various types of structures are described in detailed. 
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