
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

AN UNSTEADY TWO-DIMENSIONAL ANALYTICAL SOLUTION FOR 
MODELING AIR POLLUTION DISPERSION AND TURBULENT DRY 

DEPOSITION 
 

Daniela Buske, buske@mecanica.ufrgs.br  
Universidade Federal do Rio Grande do Sul - PROMEC - Porto Alegre, Brasil 

 

Davidson Martins Moreira, davidson@mecanica.ufrgs.br  
Universidade Federal de Pelotas, UNIPAMPA, Bagé, Brasil 

 

Tiziano Tirabassi, t.tirabassi@isac.cnr.it     
Institute ISAC of CNR , Bologna, Italy 

 

Marco Túllio Vilhena, vilhena@mat.ufrgs.br  
Universidade Federal do Rio Grande do Sul - PROMEC - Porto Alegre, Brasil 

 

Abstract. Dry deposition at the surface of air pollution from a ground-level or an elevated source can be considered in 

different ways. The deposition flux is usually parameterized in terms of deposition velocity, which is either specified 

empirically or estimated from appropriate theoretical relations. Using the gradient transport, dry deposition is 

included by specifying the deposition flux as the surface boundary condition. The advection-diffusion equation can be 

written in finite difference form, thus opening the door to a countless variety of numerical solutions. Analytical 

solutions of equations are of fundamental importance in understanding and describing physical phenomena. Analytical 

solutions (as opposed to numerical ones) explicitly take into account all the parameters of a problem, so that their 

influence can be reliably investigated and sensitivity analysis over model parameters may be easily performed. 

Moreover, numerical codes based on analytical expressions need less computational resources. In this work we present 

a general solution (i.e. for any wind and eddy diffusivity vertical profiles) for the unsteady two-dimensional advection-

diffusion equation with dry deposition to the ground. The above solution is obtained applying Generalized Integral 

Laplace Transform Technique (GILTT). Moreover, we will report numerical simulations of the ground-level 

concentrations compared with an experimental data set. 
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1. INTRODUCTION  
 

The advection-diffusion equation can be written in finite difference form, thus paving the way to a countless variety 

of numerical solutions. Using the gradient transport approach (K-theory), dry deposition is included by specifying the 

deposition flux as the surface boundary condition. Therefore, numerical solutions to the advection-diffusion equation 

with variable eddy diffusivities are used to take into account the effects of dry deposition as well as gravitational 

settling for heavier particles (Arya 1999).  

Analytical solutions of equations are of fundamental importance in understanding and describing physical 

phenomena, since they are able to take into account all the parameters of a problem, and investigate their influence and 

it easy to obtain the asymptotic behavior of the solution, which is usually difficult to generate through numerical 

calculations. Moreover, when using models, while they are rather sophisticated instruments that ultimately reflect the 

current state of knowledge on turbulent transport in the atmosphere, the results they provide are subject to a 

considerable margin of error. This is due to various factors, including in particular the uncertainty of the intrinsic 

variability of the atmosphere. Models, in fact, provide values expressed as an average, i.e. a mean value obtained by the 

repeated performance of many experiments, while the measured concentrations are a single value of the sample to 

which the ensemble average provided by models refer. This is a general characteristic of the theory of atmospheric 

turbulence and is a consequence of the statistical approach used in attempting to parameterize the chaotic character of 

the measured data.  An analytical solution can be useful in evaluating the performances of numerical model (that solve 

numerically the advection diffusion equation) that could compare their results, not only against experimental data but, 

in an easier way, with the solution itself in order to check numerical errors without the uncertainties presented above. 

Many operative models (using and analytical formula for the air pollution concentration) adopt empirical algorithms 

for describing dry deposition. The Gaussian plume equation was modified to include source depletion models 

(Chamberlain 1953; Overcamp 1976) and surface depletion models algorithms (Horst 1977, 1984). The solution 

proposed by Smith (1962), Ermak (1977), Rao (1981) also retained the framework of invariant wind speed and eddies 

with height (as the Gaussian approach). More recently, analytical solutions of advection-diffusion equation with dry 

deposition at the ground have utilized height-dependent wind speed and eddy diffusivities (Horst and Slinn 1984; Koch 

1989; Chrysikopoulos et al. 1992; Lin and Hildemann 1997). However, these solutions are restricted to the specific case 



where the source is located at the ground level and/or with restrictions to the wind speed and eddy diffusivities vertical 

profiles. 

In this work we step forward solving analytically the two-dimensional, unsteady advection-diffusion-deposition 

equation using the GILTT (Generalized Integral Laplace Transform Technique) method. For more details about the 

methodology see the works of Wortmann et al. (2005), Moreira et al. (2005) and Moreira et al. (2006).  

The dry deposition is described with a boundary condition of non-zero flux to the ground and without any restriction 

to the above profiles and the source position. Indeed, for this type of problem, the eigenvalues and eigenfunctions of the 

auxiliary Sturm-Liouville problem must be determined assuming boundary conditions of third type, which encompass 

the contaminant deposition speed. At this point it is worth noting that the mentioned works (Wortmann et al. 2005; 

Moreira et al. 2005; Moreira et al. 2006) assume boundary conditions only of second type. 

To validate the results obtained, numerical comparison is undertaken with available results in the literature. 

 
 

2. THE ANALYTICAL SOLUTION 
 

For a Cartesian coordinate system in which the x direction coincides with that of the average wind, the unsteady 

two-dimension advection-diffusion equation with dry deposition to the ground is written as: 

 









=+

z

tzxc
zK

zx

tzxc
zu

t

tzxc
y

z

yy

∂

∂

∂

∂

∂

∂

∂

∂ ),,(
)(

),,(
)(

),,(
                                                                                       (1) 

 

subjected to the boundary conditions: 
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a continuous source condition: 
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and the initial condition:  
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Here, 
y

c  denotes the pollutant concentration, Kz is the turbulent eddy diffusivity coefficient assumed to be a 

function of the variable z, u is the mean wind oriented in the x direction and function of the variable z, Vg the deposition 

velocity, h is the height of PBL, Q the emission rate, Hs the height of the source and δ  is the Dirac-Delta function. 
Using the Laplace Transform technique, transforming t into r and 

y
c  into C, the equation (1) becomes:  
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To solve the problem by the GILTT method, Eq. (2) is rewritten as: 
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where it should be noted that the first term on the right hand side satisfies the following Sturm-Liouville problem: 

 

0)()('' 2 =+ zz iii ζλζ           at  0 < z < h                                                                                                                    (4) 
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0)(' =ziζ                              at  z = h                                                                                                                        (4b) 

 

The solution of problem (3) constitutes a well known set of orthogonal eigenfunctions ))(cos()( zhz ii −= λζ  

whose eigenvalues fulfill the ensuing transcendental equation: 

 

1))(tan()( Hhzz ii =λλ                                                                                                                                               (4c) 

 

where 

z

g

K

V
H =1

. The eigenvalues are calculated solving the transcendental equation by the Newton-Raphson method.  

It is now possible to apply the GILTT approach. For this purpose, the pollutant concentration is expanded in the 

serie:  
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Replacing the above equation in Eq. (3) and taking moments, the following is obtained: 
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The above equation can be written in matrix fashion as: 
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where ),( rxY  is the column vector whose components are ),( rxci
, the matrix F is defined as EBF

1−=  and the 

matrices B and E  are given by: 
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Following the procedure of Wortmann et al. (2005), Moreira et al. (2005) and Moreira et al. (2006), one obtains the 

following solution for problem (7): 
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where X  is the eigenfunction matrix of F , G  is the diagonal matrix whose entries have the form 
xd ie

−
, 

id  are the 

eigenvalues of F and ξ  the vector given by )0(1
YX

−=ξ . Knowing the coefficients of the concentration series 

expansion, the solution for pollutant concentration given by Eq. (5) is well determined: 
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where ),( rxci
 is the solution of the transformed problem given by Eq. (9), and )(ziζ comes from the solution of the 

Sturm-Liouville problem given in problem (4), where ))(cos()( zhz ii −= λζ . 

Finally, the time-dependent concentration is obtained inverting numerically the transformed concentration 

),,( rzxC  by the FT algorithm (Valkó and Abate, 2004; Abate and Valkó, 2004): 
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where ( )irS k += θθθ cot)( , πθπ +<<− , ( )
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π
θ =  and r  is a parameter based 

on numerical experiments. To control the round-off error in the computation of (11), we specify the precision 

requirement: number of precision decimal digits = M . No approximations are made in the derivation of this solution 

and so, it is analytical except for the round-off error and numerical inversion of time. The infinite series given in Eq. 

(11) can be truncated when the convergence is under a prefixed value. In the present case, 60 terms were utilized with 

an error of 0.5%. 

 

3. EXPERIMENTAL DATA AND PBL PARAMETERIZATION 
 

In order to show an example of the application of the obtained solution (Eq. (10)), the dataset of the Hanford 

diffusion experiment was used. This experiment was conducted in May-June, 1983 on a semi-arid region of south 

eastern Washington on generally flat terrain. The detailed description of the experiment was provided by Doran and 

Horst (1985). Data were obtained from six dual-tracer releases located at 100, 200, 800, 1600 and 3200m from the 

source during moderately stable to near-neutral conditions. However, the deposition velocity was evaluated only for the 

last 3 distances. The release time was 30 min except in run five, when it was 22 min. The terrain roughness was 3cm. 

Two tracers, one depositing and one non-depositing, were released simultaneously from a height of 2 m. Zinc 

sulfide (ZnS) was chosen for the depositing tracer, while sulfur hexafluoride (SF6) was the non-depositing tracer. The 

lateral separation between the SF6 and ZnS release points was less than 1 m. The near-surface release height and the 

atmospheric stability conditions were chosen to produce differences between the depositing and non-depositing tracer 

concentrations that could be easily measured. The data collected during the field tests were tabulated (as crosswind-

integrated tracer concentration data) and presented in Doran et al. (1984). The meteorological data and crosswind-

integrated tracer concentration data, normalized by the release rate Q, are listed in Tab. 1. Note that in Tab. 1, Cd and 

Cnd are, respectively, the crosswind-integrated concentrations of ZnS and SF6 normalized by the emission rate Q. For 

more details about the way that the effective deposition velocities and wind speed are calculated, also about the way 

that the measurements were taken, see the work of Doran and Horst (1985).  

In order to use the above solution (Eq. (10)), it was necessary to select wind and eddy coefficient vertical profiles. 

The reliability of each model strongly depends on the way that turbulent parameters are calculated and related to the 

current understanding of the PBL (Seinfeld and Pandis, 1997).  

The vertical eddy diffusivity used in this work is given in Degrazia et al. (2000): 
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where z is the height, w*  is the vertical convective velocity scale, ( ) 45
/1 hzL −=Λ and L is the Monin-Obukhov 

length. 

The wind velocity profile was described by a power law expressed as follows (Panofsky and Dutton 1988): 
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where uz and u1 are the mean wind velocity at the heights z and z1, while n is an exponent that is related to the intensity 

of turbulence for rural terrain (Irwin 1979). 
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Table 1. Tracer and meteorological data for six dual-tracer releases. L (m), u* (cm.s
-1

)
 
and h (m) are the Monin-Obukhov 

length scale, the friction velocity and the PBL height, respectively, u is the wind velocity and Vg the deposition velocity. 

Subscript d refers to depositing material and subscript nd refers to non-depositing material. 

 

 

Exp. 

Arc  

(m) 

ZnS/Q 

(s.m
-2

) 

SF6/Q 

(s.m
-2

) 

u 

(m.s
-1

) 

Vg 

(cm.s
-1

) 
 

Cd/Cnd 

u* = 40
 

L = 166 

h = 325 

800 

1600 

3200 

0.00224 

0.000982 

0.000586 

0.00373 

0.00214 

0.00130 

7.61 

8.53 

9.43 

4.21 

4.05 

3.65 

0.601 

0.459 

0.451 

u* = 26
 

L = 44 

h = 135 

800 

1600 

3200 

0.00747 

0.00325 

0.00231 

0.0129 

0.00908 

0.00722 

3.23 

3.59 

3.83 

1.93 

1.80 

1.74 

0.579 

0.358 

0.320 

u* = 27
 

L = 77 

h = 182 

800 

1600 

3200 

0.00306 

0.00132 

0.000662 

0.00591 

0.00331 

0.00179 

4.74 

5.40 

6.32 

3.14 

3.02 

2.84 

0.518 

0.399 

0.370 

u* = 20
 

L = 34 

h = 104 

800 

1600 

3200 

0.00804 

0.00426 

0.00314 

0.0201 

0.0131 

0.00915 

3.00 

3.39 

3.75 

1.75 

1.62 

1.31 

0.400 

0.325 

0.343 

u* = 26 

L = 59 

h = 157 

800 

1600 

3200 

0.00525 

0.00338 

0.00292 

0.0105 

0.00861 

0.00664 

3.07 

3.24 

3.46 

1.56 

1.47 

1.14 

0.500 

0.393 

0.440 

u* = 30
 

L = 71 

h = 185 

800 

1600 

3200 

0.00723 

0.00252 

0.00125 

0.0134 

0.00615 

0.00311 

3.17 

3.80 

4.37 

1.17 

1.15 

1.10 

0.540 

0.410 

0.402 

 

 

4. NUMERICAL RESULTS 
 

The model was evaluated with the ratio Cd/Cnd, where Cd and Cnd are the crosswind-integrated concentrations of ZnS 

and SF6 measured at 1.5 m above the ground and normalized respectively by the emission rate Q. A comparison of 

predicted and observed values Cd/Cnd are shown in Fig. 1 for approach (11), with vertical eddy diffusivity given by 

Degrazia et al. (2000) and power profile of wind (Panofsky and Dutton 1988). Data between dot lines correspond to a 

factor of two. In this respect, it is possible to note that the model reproduces fairly well the observed concentration. 

 
Figure 1. Scatter diagram of observed and predicted data.  Data between dot lines correspond to a factor of two. 

 



Table 2 presents some performance measurements, obtained using the well known statistical evaluation procedure 

described by Hanna (1989): 

 

Normalized mean square error (NMSE) = popo CCCC
2)( − , 

 

Factor of due (FA2) = fraction of data (%) for 2)/(5.0 ≤≤ op CC  

 

Correlation coefficient (COR) = 
poppoo CCCC σσ))(( −− , 

 

Fractional bias (FB) = )(5.0 popo CCCC +− , 

 

Fractional standard deviations (FS) = )(5.0)( popo σσσσ +−  

 

where subscripts o and p refer to observed and predicted quantities, respectively, σ  is the standard deviation and an 

overbar indicates an average.  

 

Table 2. Statistical evaluation of model performance. 

 

 NMSE COR FA2 FB FS 

GILTT 0.01 0.77 1.00 -0.01 0.38 

 

The statistical index FB indicates whether the predicted quantities underestimate or overestimate the observed ones. 

The statistical index NMSE represents the quadratic error of the predicted quantities in relation to the observed ones. 

Best results are indicated by values nearest zero in NMSE, FB and FS, and nearest 1 in R and FA2. The statistical 

indices point out that a good agreement is obtained between experimental data and the GILTT model. The 

computational time to obtain the numerical results was 72 seconds in an Intel Celeron, 1.60GHz and 1024Mb of RAM.  

Doran and Horst (1985) presented four different models that evaluate the dry deposition at the ground with four 

different approaches: the source depletion approach of Chamberlain (1953), the corrected source depletion model of 

Horst (1980, 1983), the K model proposed by Ermak (1977) and Rao (1981), and the K corrected model of Rao (1981). 

Finally, to compare the results with the four models above, different statistical parameters were calculated (used in the 

paper by Doran and Horst, 1985) described by Fox (1981) and Willmott (1982):  
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where di is the difference between observed (Coi) and predicted (Cpi) values, 
i' Cp Coi iP = − , 'i i iO Co Co= − , the 

overbar indicates an average and 0 < I <1 and N  is the data number. 

In Tab. 3 comparisons between the GILTT approach and the above models (Chamberlain, 1953; Horst, 1980; Horst, 

1983; Ermak, 1977; Rao, 1981) are reported, and it is possible to see the good performance of the solution. 
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Table 3. Statistical evaluation of model performance compared with other models. 

 

Parameter GILTT Source 

depletion 

Corrected source 

depletion 

K model Corrected 

K model 

Mean Bias 0.01 0.11 0.01 0.21 0.07 

Mean absolute error 0.04 0.11 0.05 0.21 0.07 

S = (variance)
1/2 

0.05 0.05 0.06 0.08 0.05 

Correlation coefficient 0.77 0.82 0.70 0.63 0.78 

Index of agreement 0.84 0.64 0.83 0.42 0.76 

 

 

5. FINAL REMARKS 
 

A general solution of the two-dimension time-dependent advection-diffusion equation considering dry deposition to 

the ground has been presented. In order to show the performances of the solution in actual scenarios, a parameterization 

of the PBL has been introduced, and the values predicted by the solutions have been compared with the Hanford 

diffusion experiment dataset. The analysis of the results shows a reasonably good agreement between the computed 

values against the experimental ones. Finally, the solution results were compared with those of 4 different models. 

Therefore the methodology discussed is promising to simulate pollutant dispersion in atmosphere. Furthermore, the 

use of the FT algorithm allows us to obtain results with a prescribed accuracy.  

We focus our future attention in the task of improving this methodology in order to make it more operational for air 

quality modeling. 
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