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Abstract. The estimation of fatigue strength or fatigue life of a component under combined loading is fundamental to
correct design and safe operational life of many structural components. The fatigue process under complexes states of
stresses generated in these situations is known as Multiaxial Fatigue. In the present work the algorithm for
determination multiaxial fatigue limit is developed and implemented, based in the ellipsoid simplified circumscribed
model, proposed for Balthazar e Malcher (2006). A theoretical revision of the model as well as a quantitavive analysis
is made. To the end, a comparison of the results presented with the other available models in literature became.
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1. INTRODUCTION

Most of structural mechanical components are frequently subjected to variable loading, which can lead to sudden
fatigue failure. Crank drive shafts, pressure vessels, blade/rotor junctions, bolted junctions and many aeronautical
components are usually operating under combined loads which can still be out of phase and in different frequencies
generating complexes biaxial or triaxial states of stresses. The fatigue process under such states of stresses is known as
Multiaxial Fatigue whose consideration is of fundamental importance for assessment of life and operational reliability
of structural components. Therefore, efficient and accurate methodologies for the evaluation of fatigue endurance limit
under multiaxial stress states are required for use in engineering design applications.

Although many important developments have been made over more than hundred of research on the subject, many
designers still resort to large factors of safety to guard structural components against fatigue failures. The first attempts
to investigate problems of multiaxial fatigue go back to the end of 19th century when Lanza (1886) published results of
tests concerning combined bending/torsion loading. In the early decades of the 20th century, investigators like Mason
(1917), Haigh (1923), Nishiara and Kawamoto (1941) and Gough et al (1951) presented empirical relations obtained
from experimental data. The initial theories proposed to predict fatigue failure under combined loading were basically
an extension of the failure theories for static multiaxial state of stress to multiaxial states of cyclic stresses. The aim of
these theories was to produce an uniaxial stress amplitude equivalent to a given multiaxial cyclic stress states and then
use it to predict fatigue life from S-N curves, obtained from conventional fatigue tests. The Maximum Shearing Stress
Theory of Fatigue Failure and the Distortion Energy Multiaxial Theory of Fatigue Failure (1981) were basically
extensions of the Tresca and von Mises theories, respectively. The stress amplitudes were substitutes for the static
principal stresses and the reversed fatigue strength or fatigue limit replaced the yield stress. The experimental evidence
showed these methods were very conservative. The models for multiaxial fatigue analysis are generally divided into
three groups: the stress-based models, strain-based models and energy models.

For multiaxial high cycle fatigue — HCF analysis, a number of criteria, derived from different approaches to the
problem, have been reviewed in the literature (1981, 2004), the equivalent stress, the critical plane, the average stress
and the stress invariant methods, are the most known approaches for the problem.

In the present work the algorithm for determination multiaxial fatigue limit is developed and implemented, based in
the ellipsoid simplified circumscribed model, proposed for Malcher & Balthazar (2006).

2. MULTIAXIAL HIGH CYCLE FATIGUE MODELS

Many mechanical components, like the hydraulic turbines used in the power generating industry, are designed to
endure a very large number of cycles without failure. Their size and operational conditions make impractical frequent
stoppages for inspection and maintenance and, consequently, the use of Fracture Mechanics approaches for failure
control. In the high cycle fatigue regime, most of total life is spent to initiate a crack of detectable size by non-
destructive inspection. Thus, in these cases, it would be preferable to design against HCF, considering a criterion for
crack initiation in order to keep structures under dynamic loading operating safely. To achieve this objective, a domain
of safety, limited by a threshold below which cracks will not initiate, must be calculated.

The degradation of the state of the material under HCF occurs at stress levels well below the yield limit. The fatigue
damage is related to cyclic plastic deformations at the grain level, followed by the formation of persistent slip bands
from which microcracks will be nucleated, even in materials under elastic regime at macroscopic level. Therefore, shear



stresses must be considered as one of the driving forces of the fatigue process. The normal stresses, which act upon the
initiating crack, will also affect the fatigue resistance.

2.1. The Stress Invariant Methods

The invariant stress approach is based on the invariants of the stress tensor and/or its deviator tensor. The basic idea
is to directly relate the fatigue strength with the second invariant of the stress deviator and first invariant of the stress (3
times the hydrostatic stress). The initiation of a fatigue crack under cyclic loading would be predicted when the left side
of the equation below gets bigger than the right side:

JJ2a +k(N)opy <A(N) (1)

where, ,/.J, , is the equivalent shear stress amplitude, o, is the hydrostatic stress and k(N ) and /I(N ) are parameters

to be experimentally determined.

Some models which use only the first invariant of the stress tensor and the second invariant the deviator tensor can
be regarded as a combination of the equivalent stress approach, as it uses a shear stress equivalent to the multiaxial
applied stresses, and the critical plane approach, as it searches for the maximum values of their parameters in a plan
with the greatest intersection with the path of the deviatory stress tensor. The models of Sines (1955), Crossland
(1956) and Kakuno-Kawada (1979) can be also be classified in this category are good representatives of this kind of
approach.

The criteria of Sines (1955) and Crossland (1956) can be written in a general form as:

g@)+ flo)<a 2

where, f and g are functions of the shear stress t and the normal stress o, respectively. The Sines criterion is
mathematically expressed as:

\) J2,a + ko—H,mean <4 (3)

where, ,/J,, is the equivalent shear stress amplitude and o ,,,, is the mean hydrostatic stress. The parameters k and

A are material constants, which can be obtained from two simple fatigue tests: the repeated bending limit f0 (ca=om=
f0 ) and the fully reversed torsion limit t-1 (ta =t-1 , tm = 0).

k=[3’_—lj_ﬁ; A=t @)

0

Instead of the mean hydrostatic stress, the Crossland criterion considers the influence of the maximum hydrostatic
Stress, Oy max

Nra KOl max SA (5)

The parameters k and A can be also obtained from two simple fatigue tests: the fully reversed bending limit f-1 (ca =
f-1 , om = 0) and the fully reversed torsion limit t-1 (ta =t-1 , tm = 0).

k:(y—‘lj—\/g; A=t 6)

-1

Kakuno and Kawada suggested that the contribution of the invariant of the stress deviator and the hydrostatic stress
should be different:

JJro thkoy ,+A0,,, <u ™
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where, the parameters k, A e # should be determined from three uniaxial fatigue limits: f,, ¢ ;e f, (repeated

bending, fully reversed torsion, fully reversed bending). Thus,
3t 3t
k=(—1J—x/§;/l=(—‘J—x/§;ﬂ=t_1 ®)
Ja o
For these criteria, failure will occur when the left side of the equation gets greater than the right side.
2.2. The Maximum Hydrostatic Stress
The hydrostatic stress can be determined in function of hydrostatic tensor o . It is equivalent the first invariant of
the stress tensor.

1 1
Oy =§(trg)=§(0'm +0,,+0.,) 9

On the cyclic loading, the hydrosttic stress is a function of the time o (t) and the mean hydrostatic stress and the

hydrostatic stress amplitude can be determine through the relationship between the greater and minor trace of the
Cauchy tensor.

] vlalo) .rr@(r»}% - vlato) .rr(g(r»J

Ha :5 max ———— —min—-— =— =—+min—— (10)
The maximum hydrostatic stress can be determined for:
O Hmax = O Hm + O Hq (1 1)

2.3. The Equivalent Shear Stress Amplitude

The basic difference in the application of the models based on the invariants of the stress tensors, as the models of
Sines (1955), Crossland (1956) and Kakuno-Kawada (1979), is the value, mean or maximum, of the hydrostatic stress

oy used and the way to calculate the parameter ,/.J, , . The definition of hydrostatic stress is well established and no

greater difficulty to calculate it exists. The definition of the equivalent shear stress amplitude,/J,, is more
complicated.
When the applied cyclic loading is uniaxial or in-phase multiaxial, the equivalent shear stress amplitude ,/.J, , can

be determined directly taking the square root of the second invariant of the deviatory tensor:

1 > 2 2 ( 2 2 2)
J2,a = \/g (O-xx,a - O-yy,a ) + (o-yy,a - O-zz,a) + (O-zz,a - O-xx,a) +6. Txy,a + Z-yz,a + sz,a (12)

However, when the applied cyclic loading is out-of-phase multiaxial, the determination of ,/J, , is not so simple,

requiring complex mathematical calculations. The vector representing the equivalent shear stress amplitude has its
direction and magnitude varying along the cycle. Fig. 1(a) shows how the shear stress amplitude varies along the cycle
on a proportional and non-proportional loading;

On the point under study, a generic plane A can be defined by its unit normal vector n, described by the spherical angles
¢ and 0, Fig. 1(b). The stress vector Sn acting on a such plane can be decomposed in its normal vector N and the shear
stress vector C.

During the load cycle, the tip of the vector Sn describes a closed space curve y whose projection on plane A is the
path of the shear stress vector C on that plane, y’, Figure 1(c). The shear stress amplitude Ca depends on the
orientation of plane A, thus Ca = f(¢,0). To determine the maximum shear stress amplitude Ca,max is necessary to
search the maximum of Ca = f(¢,0) over the angles ¢ and 0. The critical plane approach requires to find the normal
stress and shear stress amplitudes and mean values on each plane A passing by the point of interest and then searching



the critical plane. For stress invariant approaches, the amplitude of the equivalent shear stress ,/.J, , remains the same

for any orientation of the plane A.

Mon-Proportional
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Figure 1 — (a) Behaviour of the shear stress amplitude under proportional and non-proportional loading. (b) Stress
vector Sn , normal stress N and shear stress vector C acting on generic plane A. (¢) Load paths y described by the stress
vector Sn and v’ described by the shear stress vector C on a generic plane A.

Different methods to calculate the equivalent shear stress amplitude were proposed by Dang Van et al (1988),
Deperrois (1991), Duprat et al (1997), Bin Li et al (2000), Mamiya and Aratjo (2002) and Balthazar and Malcher
(2004) which will be described next.

2.3.1. The Minimum Circumscribed Hypersphere Method

Dang Van and Papadopoulos (1988) proposed the shear stress amplitude to be the radius C, of the minimum
hypersphere circumscribing the loading path l//'. The mean value of the shear stress is the length of the vector w that
points from the origin O to the center of the minimum circumscribed hypersphere, Cm , Figure 2. To facilitate the

calculation of ,/J,, , the following transformation is used:

Sl =§Sxx,S2 =

%(SW_SZZJ’%:SXW&=SXZaS5=Syz (13)

With the above rules the general six components of the deviatory stress may be transformed into a five component
stress vector, allowing the stress deviator to be fully described by fewer components in the transformed space.

Minimum
circumscribed
hypersphere

Figure 2: The Minimum Circumscribed Hypersphere Model.
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The center w' and the radius R are determined by the following equations:
w‘:min(maxHS(t)— WH); R= mtaX“S(t)— W“ (14)

2.3.2. The Minimum Circumscribed Ellipsoid Method
An approach to determine the equivalent shear stress amplitude taking in account the effect of the phase angle was
proposed by Bin Li et al (2002). Instead of circumscribing the loading path ' by a minimum hypersphere, Bin Li and

his colleagues suggest to consider the minimum circumscribed ellipsoid to calculate ,/.J,, . The value of the equivalent

shear stress would be then:

Jyy =R2+R} (15)

where, R, and R, are the two semi-axis of an ellipse circumscribing the loading path (//' . This method requires a two

step procedure for the determination of 4/J,, , figure 3. Firstly, a minimum circumscribed circle of radius R, equal to
the ellipse great semi-axis, is established according the minimum circumscribed hypersphere method, described above.
The small semi-axis R, is the determined from the minimum ellipse contained in the circle and also containing the

loading path l//' .

i murm
circumscribed
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Minimum
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R

Figure 3: The minimum circumscribed ellipsoid method.

This model takes in account the effect of non-proportional loads on fatigue life and presents good results for
multiaxial fatigue strength, when compared to the other methods, but it also presents the same difficulties of the Dang
Van and Papadopoulos method to determine the center of the minimum circumscribed circle, which is also the center of
the minimum circumscribed ellipse.

2.3.3. The Minimum Prismatic Envelope Method
Mamiya e Araujo (2002) proposed, instead of hypersphere or ellipsoid, the construction of a prismatic envelope

containing the loading path projected on the deviatory plane, Figure 4. The equivalent shear stress amplitude could then
be calculated by the following equations:

1
.
o Do R ®

i=1

where, @; are the amplitudes of the components X; (t) of the microscopic deviatory stresses.



Figure 4: Ellipsoid in the R™ space and circumscribed rectangular prism arbitrarily oriented.
2.3.4. The Minimum Simplified Circumscribed Ellipsoid Method

Duprat et al (1997) proposed a method, which could consider the phase angle in tension-bending and torsion stress
loading. The model is derived from Crossland criteria, using the projection of the stress tensor path on the deviatory
plane. This projection is an ellipse of long axis D and short axis d, Figure 5. While Crossland original formula uses only

D in the calculation of /J,, , Duprat et al replaces D by the half-perimeter of the ellipse, % , to take in account the

phase difference, characterized by D and d.
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Figure 5: Projection of the tensor path on the deviatory plane.

The values of D and d are given by:
D = max(t)p(w t); d = min(t)p(w t) 17)

with the parameter p(@ t) being:

plon) = ofls(0)- (e + 2))(s()- 56+ )]s (18)

where, §(t) is the deviatory stress tensor .

The value of the equivalent shear stress amplitude /J,, is function of the ellipse half-perimeter p, /2 :

RIPYORN D-d

— 8 A=
4 64 256 D+d

(19)
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Malcher & Balthazar (2006) showed the application of this method results in increased scatter for larger phase
angles between the applied loads. They showed that a reduction on such scattering could be obtained combining the
proposal of Duprat et al (1997) with the minimum circumscribed ellipsoid method proposed by Bin Li et al (2000). The
equivalent shear stress amplitude could be calculated as proposed by Bin Li:

Jy, =R2+R} (20

but using the values of the ellipse semi-axis from the model of Duprat. Thus:

R, =2 _ max(t)p(a)t);Rb 21 _ min(t)p(a)t) 1)
2 2 2 2
The equivalent shear stress amplitude would be then given by:
1 [max(e)plen)] + [min(r)o(w)]
Vi =2 @)
2 B

The main advantage of this modification is the simplicity added to the equivalent shear stress amplitude
calculations, as it is easier to determine the ellipse semi-axis D/2 and d/2 as proposed by Duprat than the complex
calculations required to obtain the center of the minimum circumscribed hyperesphere or ellipsoid, necessary for the
methods of Dang Van, Papadopoulos and Bin Li. Thus, the criterion for multiaxial fatigue can be expressed as:

3. ALGORITHM FOR IMPLEMENTATION THE MALCHER & BALTHAZAR METHOD

The figure 6 shows step by step to implement at algorithm developed for Malcher and Balthazar model (2006). It’'s
necessary informant the path loading and the material propriety. After, the Cauchy Tensor and Deviator Tensor are

defined. The maximum and minimum trace of Cauchy Tensor and the parameter p(a) t ) of the Deviator Tensor are

searched with increment of the one by one degree of the phase angle. The maximum hydrostatic stress and the
equivalent shear stress amplitude can be determined. The end, the index of error and the ratio of stress are calculated.

Begin

Read 0 0 Mtl @ and &

Read Ly 7, . andnm;

Loading: o, , o,,,(). @, R.epeatlt_;]i) wtln
and «, . Repeat j=1 wtil 6
I o o=a 4 senlar - ),
End.
End.
A 0, T T,
Define: o and § g{a oo }-,
— — l- S S
! L0 I )
3 3
1
Search: max@ and Search: p(wt),, and plet),, S=g-gzral;
3
' tr(i(t)) p:m)=rr[[£(:)—g(z+Jr)£]:z)—£(r+ﬂ)]';
T If I =madr Yo ) ;
If o =minfy Jolar );
i End]
Determine : o 1 iet] +fminf)elar)]
— H.max JJ_-Q ¥l ;
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J’ L AT AT, E o Lo
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—>  Determine: K and | % !

Ta {E-T41008
End.

Figure 6: Algorithm for Malcher and Balthazar Model.



4. RESULTS

Experimental data obtained in the literature was used to test the algorithm and the results were comparated with
Papadopoulos model. It was used 32 results from biaxial constant amplitude loading, from in-phase and out-of-phase
tests conducted by Zener et al, 1985 on 34Cr4 steel (group: 100 — test: traction+torsion); by Froustey and Lasserre, 1988
on 30NCD16 (group: 200 — test: beding+torsion) and by Nishihara and Kawamoto, 1945 on Hard steel (group: 300 —
test: beding+torsion) as reported by Weber(1999) and Papadopoulos(1993).

Defining the equivalent stress O og 1O the fully reversed torsional fatigue limit 7_; ratio as K = o, / t_, , it is possible

to assess the quality the predictions made by each model. If K=1 the model predict perfectly the multiaxial fatigue
behaviour. If K is higher than 1, the predictions are conservative. An index of error I can be also established as
1= (K —1)x 100. Tables 1 to 3 and figure 3 show the data applied to test the Malcher & Balthazar and Papadopoulos

models.

Table 1 — Experimental data for 34Cr4 steel

Group Test Steel {1 fp t4q N agllm wolla ol12m ol2a al?2

100 101 34Crd 410 640 256 1500000 a 34 a 157 0
100 102 34Crd 410 &40 256 1500000 a 315 a 158 &0
100 103 34Crd 410 &40 256 1500000 a 16 a 158 40
100 104 34Crd 410 &40 256 1500000 a 35 a 188 120
100 105 34Crd 410 &40 256 1500000 a 224 a 224 90
100 106 34Crd 410 &40 256 1500000 a 380 a 95 90
100 107 34Crd 410 B40 256 1500000 a 318 158 188 0
100 108 34Crd 410 B40 256 1500000 a 314 157 187 B0
100 108 34Crd 410 B40 256 1500000 a 315 158 188 40
100 110 34Crd 410 640 256 1500000 274 274 a 140 0
100 111 34Crd 410 &40 256 1500000 284 2a4 a 142 40
100 112 34Crd 410 B40 25k 1500000 212 212 1 212 40

Table 2 — Experimental data for 30NCD16 steel

Group Test Steel {4 fp tq N gllm olla ol1Z2m ol2a al2

200 201 30MNCD1E B35 1040 415 1000000 0 485 0 ggd 0
200 202 30MCDTE 695 1040 415 1000000 a 430 a 2vd a0
200 203 30MNCDTE B95 1040 415 1000000 300 430 a 277 0
200 204 30NCD16E B35 1040 415 1000000 300 480 0 277 4db
200 205 30MNCD1E B35 1040 415 1000000 300 470 0 271 B0
200 206 3OMCDTE 695 1040 415 1000000 J0a 473 a 273 40
200 207 30MCDTE B95 1040 415 1000000 300 5430 a 148 0
200 208 30MNCD16E B35 1040 415 1000000 300 bEh 0 141 45
200 209 30MNCD16E B35 1040 415 1000000 300 540 0 135 80
200 210 3OMCDTE 695 1040 415 1000000 J0a 211 1 365 0

Table 3 — Experimental data for Hard steel

Group Test Steel {4 fp tq N gllm olla ol1Z2m ol2a al2

300 301 Hard steel 314 512 1396 0 138 0 167 0
J0a 302 Hard steel 314 512 196 a 245 a 123 0
300 303 Hard steel 314 512 195 a 299 a B3 0
300 304 Hard steel 314 512 1396 0 140 0 170 30
300 305 Hard steel 314 512 1396 0 146 0 176 B0
J0a 306 Hard steel 314 512 196 a 150 a 182 40
300 307 Hard steel 314 512 195 a 250 a 125 30
300 308 Hard steel 314 512 1396 0 2b? 0 126 6O
300 304 Hard steel 314 512 1396 0 2hg 0 129 80
J0a 310 Hard steel 314 512 196 1 305 1 B4 90
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Tables 4 to 6 show the values of o .x s /24 » O¢ » 1 and K for Malcher & Balthazar and Papadopoulos models.

eq >
Notwithstanding the results given by both models were similar. The present algorithm proposal represents a simplified
way to determine the equivalent shear stress amplitude, eliminating the need the complex calculations required by the
other methods, without losing quality in the results.

It can be observed that the maximum error lies around 6% on 34Cr4 steel, 14% on 30NCD16 steel and 6% on Hard
steel when the phase angle between the applied loads is 90°.

Table 4 — Results given by Malcher & Balthazar and Papadopoulos for 34Cr4 steel

Malcher&Balthazar Papadopoulos
Group Test  Steel al2 gHmax +J2s oceq K I ocHmax YJ2a geq K I
100 101 34Cr4 01047 2348 2546 0.99 -0.6 1047 239.8 2546 0,949 -0.6
100 102 34Cr4 B0 1050 240.9 255.7  1.00 -0.1 105,0 240,49 2hh,? 1,00 -0.1
100 103 34Cr4 80 1053 2414 2562 1.00 01 105,3 241.4 2bB,2 1.00 01
100 104 34Cr4 120 1050 2409 2557 1.00 -0.1 105,0 2409 2857 1.00 -0.1
100 105 34Cr4 30 74,7 2887 269.2  1.05 5.2 74,7 258.6 264.2 1.05 5.2
100 106 34Cr4 90 1267 2391 257.0  1.00 0.4 126,7 2391 2h?.0 1,00 0.4
100 107 34Cr4 o 1053 2414 2562 1.00 01 105,3 241.4 2bB,2 1.00 01
100 108 34Cr4 B0 1047 2398 2546 099 -0.6 1047 239.8 2546 0,94 -0.6
100 109 34Cr4 90 1050 2409 2557  1.00 -0.1 105.0 240.9 2587 1.00 -0.1
100 110 34Cr4 o 1860 2134 2397 094 -6, 186,0 213.4 239.7 1,06 B4
100 111 34Cr4 90 1893 2169 2436 095 -4.8 189.3 216.9 2436 0.95 -4.8
100 112 34Cr4 90 1413 244.8 2647 1.03 3.4 141,3 2448 264.7 1,03 3.4

Table 5 — Results given by Malcher & Balthazar and Papadopoulos for 30NCD16 steel

Malcher&Balthazar Papadopoulos
Group Test  Steel l:ﬂzcleﬂ:n: J2a oceq K I oHmax J2a geq K I
200 201 30MCDIE D 3960 4056 0.98 -2.3 161.7 3960 N73 1.02 1.8
] 202 3oMCD16 80 1600 391.8 40,3 0.97 -3.3 160.0 391.8 412,49 1,01 0.7
] 203 30MCD1E 0 391.8 4073 098 -1.9 260.0 391.8 426,0 1.04 3.9
200 204 30MCD16 45 391.8 4073 098 -1.49 260.0 391.8 426,0 1.04 3.9
200 205 30MCDIE BO 25R.7 3835 398.7  0.96 -3.4 25B.7 382.8 16,0 1.02 1.6
] 206 30MCD16 80 2577 3861 4014 097 -3.3 2h?? 3861 420,0 1,03 2,5
] 207 30MCDIE 0 3.4 389.0 094 -6.3 29B,7 374 410,4 1.00 01
200 208 I0MCD16 45 2883 36R4 372R 0480 -10.3 288.3 3554 393.3 0.96 -4.1
200 209 30MCD16 80 280.0  339.7 3564 0.86 -14.1 2a0.0 339.7 376k 092 -8.1
200 210 30MCD16 0 3848 3949 0,95 -4, 5 1703 364,58 407,z 0,949 -0,7

Table 6 — Results given by Malcher & Balthazar and Papadopoulos for Hard steel

Malcher&Balthazar Papadopoulos
Group Test  Steel al2 gHmax +J2s oceq K I ocHmax YJ2a geq K I
300 30 Hard steel 0 46.0  185.0 1915 0.98 -2.3 46,0 1851 191.7 0.95 -2.3
300 302 Hard steel 0 81,7 1875 1989 1.0 1.5 1.8 187.4 199.0 1,02 1.5
300 303 Hard steel 0 99,7 1838 1978 1.0 0.9 98,7 183.8 188,0 1.01 0.9
300 304 Hard steel 30 46,7 1882 1948 099 -0.6 46,8 188,2 184.9 0,94 -0.6
300 305 Hard steel &0 48,7 1951 2020 1.03 a1 4.6 19583 2023 1.03 a1
300 306 Hard steel 90 50,0 201.6 2086 1.06 B4 0.1 203 2nab 1,06 6.3
300 307 Hard steel 30 833 1909 2027 1.03 34 83.2 190,7 2026 1,03 3.3
300 308 Hard steel &0 84.0 19256 2043 1.04 4.2 84,1 192.8 204.8 1.04 44
300 309 Hard steel 30 86.0 1971 209.1 .07 b7 aE.0 1971 204.4 1.07 b7
300 310 Hard steel 80 101,7 1874 2017 1.03 2,9 101.5 1571 2016 1,03 2,7

5. CONCLUSIONS

The present paper showed that the Malcher and Balthazar presents a simplified algorithm to determine the
equivalent shear stress amplitude and the fatigue limit, eliminating the need the complex calculations required by the



other methods without losing quality in the results. The tables 4, 5 and 6 showed comparative results for Malcher &
Balthazar model and Papadopoulos models. Papadopoulos tries to determinate this parameter through the minimum
circle circumscribing the path of the deviatory stress tensor. The models present similar results with the difference lying

on the method to calculate the equivalent shear stress amplitude ,/J,, .
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