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Abstract. The estimation of fatigue strength or fatigue life of a component under combined loading is fundamental to 

correct design and safe operational life of many structural components. The fatigue process under complexes states of 

stresses generated in these situations is known as Multiaxial Fatigue. In the present work the algorithm for 

determination multiaxial fatigue limit is developed and implemented, based in the ellipsoid simplified circumscribed 

model, proposed for Balthazar e Malcher (2006). A theoretical revision of the model as well as a quantitavive analysis 

is made. To the end, a comparison of the results presented with the other available models in literature became. 
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1. INTRODUCTION 

 
Most of structural mechanical components are frequently subjected to variable loading, which can lead to sudden 

fatigue failure. Crank drive shafts, pressure vessels, blade/rotor junctions, bolted junctions and many aeronautical 
components are usually operating under combined loads which can still be out of phase and in different frequencies 
generating complexes biaxial or triaxial states of stresses. The fatigue process under such states of stresses is known as 
Multiaxial Fatigue whose consideration is of fundamental importance for assessment of life and operational reliability 
of structural components. Therefore, efficient and accurate methodologies for the evaluation of fatigue endurance limit 
under multiaxial stress states are required for use in engineering design applications.  

Although many important developments have been made over more than hundred of research on the subject, many 
designers still resort to large factors of safety to guard structural components against fatigue failures. The first attempts 
to investigate problems of multiaxial fatigue go back to the end of 19th century when Lanza (1886) published results of 
tests concerning combined bending/torsion loading. In the early decades of the 20th century, investigators like Mason 
(1917), Haigh (1923), Nishiara and Kawamoto (1941) and Gough et al (1951) presented empirical relations obtained 
from experimental data.  The initial theories proposed to predict fatigue failure under combined loading were basically 
an extension of the failure theories for static multiaxial state of stress to multiaxial states of cyclic stresses. The aim of 
these theories was to produce an uniaxial stress amplitude equivalent to a given multiaxial cyclic stress states and then 
use it to predict fatigue life from S-N curves, obtained from conventional fatigue tests. The Maximum Shearing Stress 
Theory of Fatigue Failure and the Distortion Energy Multiaxial Theory of Fatigue Failure (1981) were basically 
extensions of the Tresca and  von Mises theories, respectively. The stress amplitudes were substitutes for the static 
principal stresses and the reversed fatigue strength or fatigue limit replaced the yield stress. The experimental evidence 
showed these methods were very conservative. The models for multiaxial fatigue analysis are generally divided into 
three groups: the stress-based models, strain-based models and energy models.  

For multiaxial high cycle fatigue – HCF analysis, a number of criteria, derived from different approaches to the 
problem, have been reviewed in the literature (1981, 2004), the equivalent stress, the critical plane, the average stress 
and the stress invariant methods, are the most known approaches for the problem. 

In the present work the algorithm for determination multiaxial fatigue limit is developed and implemented, based in 
the ellipsoid simplified circumscribed model, proposed for Malcher & Balthazar (2006). 

 
2. MULTIAXIAL HIGH CYCLE FATIGUE MODELS 

 
Many mechanical components, like the hydraulic turbines used in the power generating industry, are designed to 

endure a very large number of cycles without failure. Their size and operational conditions make impractical frequent 
stoppages for inspection and maintenance and, consequently, the use of Fracture Mechanics approaches for failure 
control. In the high cycle fatigue regime, most of total life is spent to initiate a crack of detectable size by non-
destructive inspection. Thus, in these cases, it would be preferable to design against HCF, considering a criterion for 
crack initiation in order to keep structures under dynamic loading operating safely. To achieve this objective, a domain 
of safety, limited by a threshold below which cracks will not initiate, must be calculated.  

The degradation of the state of the material under HCF occurs at stress levels well below the yield limit. The fatigue 
damage is related to cyclic plastic deformations at the grain level, followed by the formation of persistent slip bands 
from which microcracks will be nucleated, even in materials under elastic regime at macroscopic level. Therefore, shear 



stresses must be considered as one of the driving forces of the fatigue process. The normal stresses, which act upon the 
initiating crack, will also affect the fatigue resistance. 
 
2.1. The Stress Invariant Methods 

 
The invariant stress approach is based on the invariants of the stress tensor and/or its deviator tensor. The basic idea 

is to directly relate the fatigue strength with the second invariant of the stress deviator and first invariant of the stress (3 
times the hydrostatic stress). The initiation of a fatigue crack under cyclic loading would be predicted when the left side 
of the equation below gets bigger than the right side: 

 

( ) ( )NNkJ Ha λσ ≤+ .,2                                        (1) 

 

where, aJ ,2  is the equivalent shear stress amplitude, Hσ  is the hydrostatic stress and ( )Nk  and ( )Nλ  are parameters 

to be experimentally determined.  
Some models which use only the first invariant of the stress tensor and the second invariant the deviator tensor can 

be regarded as a combination of the equivalent stress approach, as it uses a shear stress equivalent to the multiaxial 
applied stresses, and the critical plane approach, as it searches for the maximum values of their parameters in a plan 
with the greatest intersection with the path of the deviatory stress tensor.  The models of  Sines (1955), Crossland 
(1956) and Kakuno-Kawada (1979) can be also be classified in this category  are  good representatives of this kind of 
approach. 

The criteria of Sines (1955) and Crossland (1956) can be written in a general form as: 
 

λστ ≤+ )()( fg                   (2) 

 
where,  f and g are functions of the shear stress τ and the normal stress σ, respectively.  The Sines criterion is 
mathematically expressed as: 

 

λσ ≤+ meanHa kJ ,,2                                  (3) 

 

where, aJ ,2  is the equivalent shear stress amplitude and meanH ,σ  is the mean hydrostatic stress. The parameters k and  

λ are material constants, which can be obtained  from two simple fatigue tests: the repeated bending limit  f0 (σa = σm = 
f0 ) and the fully reversed torsion limit t-1 (τa = t-1 , τm = 0). 
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Instead of the mean hydrostatic stress, the Crossland criterion considers the influence of the maximum hydrostatic 

stress, max,Hσ : 

 

λσ ≤+ max,,2 Ha kJ                                (5) 

 
The parameters k and λ can be also obtained from two simple fatigue tests: the fully reversed bending limit f-1 (σa = 

f-1 , σm = 0) and the fully reversed torsion limit t-1 (τa = t-1 , τm = 0). 
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Kakuno and Kawada suggested that the contribution of the invariant of the stress deviator and  the hydrostatic stress 

should be different: 
 

µσλσ ≤++ mHaHa kJ ,,,2 ..
                                          (7) 
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where, the parameters k , λ  e µ   should be determined from three uniaxial fatigue limits: 0f , 1−t e 1−f  (repeated 

bending, fully reversed torsion, fully reversed bending). Thus, 
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For these criteria, failure will occur when the left side of the equation gets greater than the right side. 

 
2.2. The Maximum Hydrostatic Stress 

 

The hydrostatic stress can be determined in function of hydrostatic tensor σ . It is equivalent the first invariant of 

the stress tensor. 
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On the cyclic loading, the hydrosttic stress is a function of the time ( )tHσ  and the mean hydrostatic stress and the 

hydrostatic stress amplitude can be determine through the relationship between the greater and minor trace of the 
Cauchy tensor. 
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 The maximum hydrostatic stress can be determined for: 
 

HaHmH σσσ +=max                                         (11) 

  
2.3. The Equivalent Shear Stress Amplitude 

 
The basic difference in the application of the models based on the invariants of the stress tensors, as the models of 

Sines (1955), Crossland (1956) and Kakuno-Kawada (1979), is the value, mean or maximum, of the hydrostatic stress 

Hσ  used and the way to calculate the parameter aJ ,2 . The definition of hydrostatic stress is well established and no 

greater difficulty to calculate it exists. The definition of the equivalent shear stress amplitude aJ ,2  is more 

complicated. 

When the applied cyclic loading is uniaxial or in-phase multiaxial, the equivalent shear stress amplitude aJ ,2  can 

be determined directly taking the square root of the second invariant of the deviatory tensor: 
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However, when the applied cyclic loading is out-of-phase multiaxial, the determination of aJ ,2  is not so simple, 

requiring  complex mathematical calculations. The vector representing the equivalent shear stress amplitude has its 
direction and magnitude varying along the cycle. Fig. 1(a) shows how the shear stress amplitude varies along the cycle 
on a proportional and non-proportional loading; 
On the point under study, a generic plane ∆ can be defined by its unit normal vector n, described by the spherical angles 
φ and θ, Fig. 1(b). The stress vector Sn acting on a such plane can be decomposed in its normal vector N and the shear 
stress vector C. 

During the load cycle, the tip of the vector Sn describes a closed space curve ψ  whose projection on plane ∆ is the 
path of  the shear stress vector C on that plane, ψ’, Figure 1(c). The shear stress amplitude Ca depends on the 
orientation of plane ∆, thus Ca = f(φ,θ). To determine the maximum shear stress amplitude Ca,max is necessary to 
search the maximum of Ca = f(φ,θ) over the angles φ and θ. The critical plane approach requires to find the normal 
stress and shear stress amplitudes and mean values on each plane ∆ passing by the point of interest and then searching 



the critical plane. For stress invariant approaches, the amplitude of the equivalent shear stress aJ ,2  remains the same 

for any orientation of the plane ∆. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – (a) Behaviour of the shear stress amplitude under proportional and non-proportional loading. (b) Stress 
vector Sn , normal stress N and shear stress vector C acting on generic plane ∆. (c) Load paths ψ described by the stress 

vector Sn and ψ’ described by the shear stress vector C on a generic plane ∆. 
 
 
Different methods to calculate the equivalent shear stress amplitude were proposed by Dang Van et al (1988), 

Deperrois (1991), Duprat et al (1997), Bin Li et al (2000), Mamiya and Araújo (2002) and Balthazar and Malcher 
(2004) which will be described next. 

 
2.3.1. The Minimum Circumscribed Hypersphere Method 

 

Dang Van and Papadopoulos (1988) proposed the shear stress amplitude to be the radius aC  of the minimum 

hypersphere circumscribing the loading path 'ψ . The mean value of the shear stress is the length of the vector w that 

points from the origin O to the center of the minimum circumscribed hypersphere, Cm , Figure 2. To facilitate the 

calculation of aJ 2 , the following transformation is used:  
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With the above rules the general six components of the deviatory stress may be transformed into a five component 

stress vector, allowing the stress deviator to be fully described by fewer components in the transformed space.  
 

 
 

Figure 2: The Minimum Circumscribed Hypersphere Model. 
 

(a) (b) (c) 
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The center 'w  and the radius R  are determined by the following equations:  
 

( )( )wtSw
w

−maxmin:' ; ( ) 'max wtSR
t

−=          (14) 

 
2.3.2. The Minimum Circumscribed Ellipsoid Method 

 

An approach to determine the equivalent shear stress amplitude taking in account the effect of the phase angle was 

proposed by Bin Li et al (2002). Instead of circumscribing the loading path 'ψ  by a minimum hypersphere, Bin Li and 

his colleagues suggest to consider the minimum circumscribed ellipsoid to calculate aJ 2 . The value of the equivalent 

shear stress would be then:  
 

22
2 baa RRJ +=               (15) 

 

where, aR  and bR  are the two semi-axis of an ellipse circumscribing the loading path 'ψ . This method requires a two 

step procedure for the determination of aJ 2 , figure 3. Firstly, a minimum circumscribed circle of radius aR , equal to 

the ellipse great semi-axis, is established according the minimum circumscribed hypersphere method, described above. 

The small semi-axis bR  is the determined from the minimum ellipse contained in the circle and also containing the 

loading path 'ψ .  

 

 
 

Figure 3: The minimum circumscribed ellipsoid method. 
 
 This model takes in account the effect of non-proportional loads on fatigue life and presents good results for 

multiaxial fatigue strength, when compared to the other methods, but it also presents the same difficulties of the Dang 
Van and Papadopoulos method to determine the center of the minimum circumscribed circle, which is also the center of 
the minimum circumscribed ellipse.  

 
2.3.3. The Minimum Prismatic Envelope Method 

 

Mamiya e Araújo (2002) proposed, instead of hypersphere or ellipsoid, the construction of a prismatic envelope 
containing the loading path projected on the deviatory plane, Figure 4. The equivalent shear stress amplitude could then 
be calculated by the following equations: 
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where, ia  are the amplitudes of the components ( )txi  of the microscopic deviatory stresses.  

 



 
 

Figure 4: Ellipsoid in the mR  space and circumscribed rectangular prism arbitrarily oriented. 
 

2.3.4. The Minimum Simplified Circumscribed Ellipsoid Method 

 

Duprat et al (1997) proposed a method, which could consider the phase angle in tension-bending and torsion stress 
loading. The model is derived from Crossland criteria, using the projection of the stress tensor path on the deviatory 
plane. This projection is an ellipse of long axis D and short axis d, Figure 5. While Crossland original formula uses only 

D in the calculation of aJ 2 , Duprat et al replaces D by the half-perimeter of the ellipse, 
2
ep , to take in account  the 

phase difference, characterized by D and d. 
 

 
 

Figure 5: Projection of the tensor path on the deviatory plane. 
 
The values of D and d are given by: 
 

( ) ( )ttD ωρmax= ; ( ) ( )ttd ωρmin=                        (17) 

 
with the parameter ( )tωρ  being: 

 

( ) ( ) ( )( ) ( ) ( )( )[ ]21. ππωρ +−+−= tStStStStrt                         (18) 

 
where, ( )tS  is the deviatory stress tensor . 

The value of the equivalent shear stress amplitude aJ 2 is function of the ellipse half-perimeter 2ep :  
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Malcher & Balthazar (2006) showed the application of this method results in increased scatter for larger phase 
angles between the applied loads. They showed that a reduction on such scattering could be obtained combining the 
proposal of Duprat et al (1997) with the minimum circumscribed ellipsoid method proposed by Bin Li et al (2000). The 
equivalent shear stress amplitude could be calculated as proposed by Bin Li:  

 

22
2 baa RRJ +=               (20) 

 
but using the values of the ellipse semi-axis from the model of Duprat. Thus:  
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The equivalent shear stress amplitude would be then given by: 
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The main advantage of this modification is the simplicity added to the equivalent shear stress amplitude 

calculations, as it is easier to determine the ellipse semi-axis D/2 and d/2 as proposed by Duprat than the complex 
calculations required to obtain the center of the minimum circumscribed hyperesphere or ellipsoid, necessary for the 
methods of Dang Van, Papadopoulos and Bin Li. Thus, the criterion for multiaxial fatigue can be expressed as: 
 

3. ALGORITHM FOR IMPLEMENTATION THE MALCHER & BALTHAZAR METHOD 

 
The figure 6 shows step by step to implement at algorithm developed for Malcher and Balthazar model (2006). It´s 

necessary informant the path loading and the material propriety. After, the Cauchy Tensor and Deviator Tensor are 

defined. The maximum and minimum trace of Cauchy Tensor and the parameter ( )tωρ  of the Deviator Tensor are 

searched with increment of the one by one degree of the phase angle. The maximum hydrostatic stress and the 
equivalent shear stress amplitude can be determined. The end, the index of error and the ratio of stress are calculated.  

 

 
 

Figure 6: Algorithm for Malcher and Balthazar Model. 
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4. RESULTS 

 
Experimental data obtained in the literature was used to test the algorithm and the results were comparated with 

Papadopoulos model. It was used 32 results from biaxial constant amplitude loading, from in-phase and out-of-phase 
tests conducted by Zener et al, 1985 on 34Cr4 steel (group: 100 – test: traction+torsion); by Froustey and Lasserre, 1988 
on 30NCD16 (group: 200 – test: beding+torsion) and by Nishihara and Kawamoto, 1945 on Hard steel (group: 300 – 
test: beding+torsion) as reported by Weber(1999) and Papadopoulos(1993). 

Defining the equivalent stress eqσ to the fully reversed torsional fatigue limit 1−t  ratio as 1−= tK eqσ , it is possible 

to assess the quality the predictions made by each model. If K=1 the model predict perfectly the multiaxial fatigue 
behaviour. If K is higher than 1, the predictions are conservative.  An index of error I can be also established as 

( ) 1001 ×−= KI . Tables 1 to 3 and figure 3 show the data applied to test the Malcher & Balthazar and Papadopoulos 

models.  
 

Table 1 – Experimental data for 34Cr4 steel 
 

 
 

Table 2 – Experimental data for 30NCD16 steel 
 

 
 

Table 3 – Experimental data for Hard steel 
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Tables 4 to 6 show the values of max,Hσ , aJ 2 , eqσ , I and K for Malcher & Balthazar and Papadopoulos  models. 

Notwithstanding the results given by both models were similar. The present algorithm proposal represents a simplified 
way to determine the equivalent shear stress amplitude, eliminating the need the complex calculations required by the 
other methods, without losing quality in the results. 

It can be observed that the maximum error lies around 6% on 34Cr4 steel, 14% on 30NCD16 steel and 6% on Hard 
steel when the phase angle between the applied loads is 90º.  

 
 
 
 

Table 4 – Results given by Malcher & Balthazar and Papadopoulos for 34Cr4 steel 
 

 
 

Table 5 – Results given by Malcher & Balthazar and Papadopoulos for 30NCD16 steel 
 

 
 

Table 6 – Results given by Malcher & Balthazar and Papadopoulos for Hard steel 
 

 
 

5. CONCLUSIONS 

 
The present paper showed that the Malcher and Balthazar presents a simplified algorithm to determine the 

equivalent shear stress amplitude and the fatigue limit, eliminating the need the complex calculations required by the 



other methods without losing quality in the results. The tables 4, 5 and 6 showed comparative results for Malcher & 
Balthazar model and Papadopoulos models. Papadopoulos tries to determinate this parameter through the minimum 
circle circumscribing the path of the deviatory stress tensor. The models present similar results with the difference lying 

on the method to calculate the equivalent shear stress amplitude aJ 2 .  
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