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Abstract. As is known, low tension cables (or chains) adopt a catenary curve when subjected to self weight. The dynamic
problem governing equations are derived in which the static problem of the slack cable is included. The cable is fixed
at one end (A) while the other end (B), not fixed, is at a different level. The slope at the fixed end is assumed arbitrary.
When this type of cable or chain is employed as a mooring device, it is necessary to know the forces for each geometric
configuration specially at endB. First, the analytical solution is stated and from it values of the horizontal and vertical
forces at end B may be found for different values of static displacements (q, horizontal andh, vertical) at that end. On
the other hand, being this the main goal, a power series approach was employed to obtain explicit expansions of the
horizontal and vertical forces in terms of q and h. The availability of these expansions allows us to introduce these forces
in a quasi-static analysis of the general problem of a floating platform. The series may be introduced in the dynamic
differential equations that govern the strongly non-linear motion of the platform.

1. Introduction

Cables are employed in different type of structures such as roofs, bridges and as mooring devices (see for instance
Esmailzadeh and Goodarzi (2001), Irvine (1992), Sannasirajet al. (1998), Smith and MacFarlane (2001) and Tibert
(1999)). Since cable or chain structures are in general very flexible, a geometrically nonlinear problem should be solved.
Their highly non-linear behavior hardly can be modeled using a standard Galerkin technique. In structural analysis
the finite element method is an extended tool. However special elements for cables or chains are often not available
in commercial finite element programs. Usually the single cable is modeled by other elements but this approach may
lead to numerical instabilities of the algorithm. Alternatively, analytical solutions may provide of more accurate and
robust results. The cable non-linearity arises from the very low bending stiffness of the cable deriving in a strongly
geometric nonlinearity rather than a material type. This situation results in difficulties when modeling both cable statics
and dynamics.

It is thought that Galileo has been the first in address the curve of a suspended cable under its own weight by mid.
S.XVII. However the equation of thecatenaria(the curve assumed by a perfectly flexible cable supported at its ends
and subjected to the gravitational forces) was derived by Leibniz, Huygens and John Bernoulli by 1691, responding to a
challenge put out by James Bernoulli to find an expression of the chain curve, as Irvine (1992) refers.

The present paper deals with a power series approach to the solution of the cable end forces and the exact curve as
an alternative to the catenary expression. The configuration studied is the following. The cable is assumed inextensible
and fixed at one end(A) while the other end(B), not fixed, is at a different level. The slope at the fixed end is assumed
arbitrary. When this type of cable or chain is employed as a mooring device, it is necessary to know the forces for each
geometric configuration specially at end B. The motivation of this solution is to couple it to the study of the dynamics of
a floating platform moored with slack cables. The latter was addressed with a cable quasi-static model for instance by
Esmailzadeh and Goodarzi (2001) and Rosales and Filipich (2006). In both references the restriction of a null slope at
one end was included. This assumption leads to a simplified algebra. This limitation is herein overcome since the tangent
at the left end is assumed arbitrary.

First, the dynamic problem of the above-described cable is stated. The static case is obviously included in the govern-
ing equations. The well-known analytical solution arise from its solution. The finding of the forces at endB is of interest.
On the other hand, being this the main goal, a power series approach was employed to obtain explicit expansions of the
horizontal and vertical forces in terms ofq andh (horizontal and vertical displacements, respectively). The authors have
used this approach systematically in strong non-linear problems (Filipichet al. (2004) and Rosales and Filipich (2006)).
The availability of these expansions allows us to introduce these forces in the quasi-static analysis of the general prob-
lem of a floating platform. The series may be introduced in the dynamic differential equations that govern the strongly
non-linear motion of the platform.
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2. Dynamics of a slack cable: governing equations

Figure 1 describes the cable under study where(X, Y ) are fixed axes and(x, y) are related to the first system by
x = X + u andy = Y + v. u andv are displacements of a pointP (X, Y ) ((arbitrarily) located at the reference axis
Y = 0) at timet0 to an instant positionP (x, y).

Figure 1. Cable configuration. Mass density per unit lengthρ and cross-sectional areaΩ are assumed constant.

Let us analyze a cable portion∆s as shown in Figure 2. Since the inextensibility of the cable is assumed, it is true that
∆s = ∆X. Also it is convenient to defineH = T cos θ (horizontal component) andV = T sin θ (vertical component).
The application of Newton’s second law and the limit for∆s → 0, lead the following equations that govern the dynamic
equilibrium of an inextensible cable,

Figure 2. Cable portion∆s. Originally portion∆X atY = 0.

{
HX = ρΩü − pH

VX = ρΩv̈ − pV
(1)

where(·)X ≡ ∂(·)/∂X and ˙(·) ≡ ∂(·)/∂t. The horizontal and vertical components of an eventual (conservative) load
are denotedpH andpV respectively. The vertical load may be separated intoqV , an eventual vertical external load and
self-weightγΩ, i.e.pV = qV − γΩ. After geometric considerations, it may be deduced that

cos θ =
dx

ds
=

dx

dX
; ; sin θ =

dy

ds
=

dy

dX
(2)
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but sincex = X + u andy = Y + v, the following is true

cos θ = 1 + uX ; sin θ = vX (3)

If we define(·)′ = d(·)
dx , we know that(·)X = (·)′xX = (·)′(1 + uX ) = (·)′ cos θ and the next statements can be deduced

cos θ =
1

1 − u′ (a); tan θ = v′ (b) (4)

Also, after using Pitagoras, we have

cos2 θ + sin2 θ = 1 ⇒ uX +
1
2
(u2

X + v2
X ) = 0 ⇒ u′ +

1
2
(v′2 − u′2) = 0. (5)

The second of Eqs. (5) may be seen from other point of view. In effect this is equivalent to set the inextensibility
conditionεX = 0. Recall that, in general,0 < 1 + εX = (1 + 2EXX)1/2, beingEXX = uX + 1

2 (u2
X + v2

X ). Then if
εX = 0 ⇒ EXX = 0. The system of equations for the particular case ofpV = −γΩ andpH = 0 is written as





HX − ρΩü = 0
VX − ρΩv̈ = γΩ
2uX + u2

X + v2
X = 0

HvX − V (1 + uX ) = 0

(6)

The last of Eqs. (6) is derived from the fact that at pointP (see Fig. 1)V/H = tan θ and making use of Eqs. (3).
The unknowns of the problem areu = u(x, t), v = v(x, t), H = H(x, t) andV = V (x, t). The authors are at present
working on the solution of this DAE (Differential-Algebraic equations) (Eqs. (6)). Since we are dealing with partial
differential equations, a separation of variables is performed with a methodology named WEM (Whole Element Method)
(Rosales and Filipich, 2002) which makes use of expanded series of trigonometric functions. A popular approach is the
finite element method to solve the dynamic problem. However particular problems should be overcome when dealing
with slack cables (see for instance Tibert (1999)).

In the next section, the static problem derived from the above-stated dynamic one, will be presented and solved in both
a classical way and using a power series expansion.

3. Statics of a slack cable: derivation of the governing equations and solutions

If we assumepH = 0 andqV = 0 as well as neglect the inertia terms (i.e.ü = 0 andv̈ = 0) in Eq. (1), the static
problem of a slack cable subjected to its own weight derives. Consequently

HX = 0 =⇒ H = constant (a); VX = γΩ (b) (7)

3.1 Analytical solution

From Eq. (7.b) and sinceV = H tan θ = Hv′ we obtain

(v′)X = β =⇒ v” =
β

cos θ
= β

√
1 + v′2 =⇒ v′′ − β

√
1 + v′2 = 0 (8)

whereβ = γΩ/H. After successive integrations and setting the boundary conditionv(0) = 0, the following well-known
solution yields,

v =
1
β

[cosh(βx + C) − cosh C] (9)

From the inextensible condition of the cables, (last of Eqs. (5)) we obtainu′ = 1±
√

1 + v′2. After imposing the boundary
conditionu(0) = 0 the solution for displacementu(x) is obtained,

u(x) = x − 1
β

[sinh(βx + C) − sinh C] (10)

Let us denoter ≡ cosh C ands ≡ sinh C, and sor =
√

1 + s2. Then the two solutionsu(x) andv(x) write

v(x) =
1
β

[r · (cosh βx − 1) + s · sinh βx] ; (a) u(x) = x − 1
β

[r · sinh βx + s · (cosh βx − 1)] (b) (11)

At this point, the values ofβ andC remain unknown. It is true that atx = a, v(a) = b andu(a) = −(Lc − a) (see
Figure 3), wherea = A + q andb = B + h, q andh are arbitrary right end displacements.
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Figure 3. Cable positions.Lc is the cable length.A, B are the coordinates of the right end of the cable once positioned.
a, b are the coordinates of the right end for arbitrary displacementsq, h at this end.

From the Eqs. (11), we have:

r cosh βa + s sinh βa = βb + r (a) r sinh βa + s cosh βa = βLc + s (b) (12)

Now, in order to findβ andC we will solve the following system inr ands (see Eqs. (12))
(

cosh a − 1 sinh βa
sinh βa cosh βa − 1

)
·
(

r
s

)
= β ·

(
b

Lc

)
(13)

After some steps we end up with the next relationship that must be satisfied byβ

sinh ϕ

ϕ
=

√
L2

c − b2

a
(14)

in whichϕ ≡ βa/2 was introduced. Givena = A + q andb = B + h for certain values ofq andh (see Fig. 3), the above
transcendental equation is solved forϕ and then fromϕ andβ definitions, one is able to obtain the value of the horizontal
componentH of the tension at the right end of the cable. From the solution of system (13) it is possible to findC with
the next expression

C = arcsinh

(
−β

2
(Lc + pb)

)
; with p = − coth

βa

2
(15)

OnceC is known the value of the vertical componentV of the tension at the right end of the cable is obtained by
calculating the following

V = Hv′ where v′ = sinh(2ϕ + C) (16)

With the steps above described, the problem of finding the horizontal and verticalH andV components of the tension
T at the right boundary is solved. Obviously, the tension may be found at any point of the cable as well as the position of
the cable for a given configuration (for anyq andh) (Eqs. (9) and (10)).

3.2 Power series solution

Since our interest is to findH andV in terms ofq andh, a power series approach will be proposed. Let us denote the
right hand member of Eq. (14.a) asf = f(q, h)

f = f(q, h) =

√
L2

c − b2

a
=

√
L2

c − (B + h)2

A + q
=

√
1 −

(
B+h
Lc

)2

A+q
Lc

(17)

where the values ofLc, A, B (see figure 3) are data. Two variableswn andwd are introduced

wn =

√
1 −

(
B + h

Lc

)2

=
M∑

k=0

Nkhk (a) ; wd =
1

A+q
Lc

=
M∑

k=0

Dkqk (b)

With this notation it is possible to find the coefficients of a series in terms ofq andh

f(q, h) = wnwd =
M∑

i=0

M∑

j=0

Kijq
ihj (18)
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where theKij may be found by a Taylor expansion. On the other hand, withϕ = βa
2

,

sinh ϕ

ϕ
= f(q, h) =

M∑

i=0

M∑

j=0

Kijq
ihj. (19)

A Taylor’s expansion of the left-handmost member yields

F (ϕ) ≡ sinhϕ

ϕ
= 1 +

ϕ2

3!
+

ϕ4

5!
+

ϕ6

7!
+ . . . (20)

In turn, as is observed, an expansion of powers ofϕ is needed in terms ofq andh. This is written as follows

ϕk =
M∑

i=0

M∑

j=0

Rkijq
ihj. (21)

In particularϕ =
∑M

i=0

∑M
j=0 R1ijq

ihj . It is possible to find

R2ij =
Aij −

∑
k=4,6,... γkRkij

γ2
(22)

where γk =
1

(k + 1)!
, k = 2, 4, 6, . . . and Aij ≡ (Kij − δi0δj0)

The coefficientsR2ij’s may be found by means of an iteration procedure and afterwards theR1ij ’s are found from the
following expressions

R(n+2)ij =
i∑

r=0

j∑

s=0

RnrsR2(i−r)(j−s), n = 2, 4, 6 . . . R2ij =
i∑

r=0

j∑

s=0

R1rsR1(i−r)(j−s) (23)

After working out this expression, the following expressions are found




i = j = 0 :
R100 =

√
R200

i = 0 :
R10j =

[
R20j −

∑j−1
s1

R10sR10(j−s)

]
/2R100

j = 0 :
R1i0 =

[
R2i0 −

∑i−1
r1

R1r0R1(i−r)0

]
/2R100

i 6= 0, j 6= 0 :
R1ij = {R2ij − [2R10jR1i0 + S0s + Sr0 + Srs]}/2R100

(24)

where the summationsSlm are

S0s ≡
∑j−1

s1 (R10sR1i(j−s) + R1isR10(j−s)) ; Sr0 ≡
∑i−1

r1 (R1r0R1(i−r)j + R1rjR1(i−r)0)

Srs ≡
∑i−1

r1

∑j−1
s1 (R1rsR1(i−r)(j−s))

This iterative procedure allows findingϕ and its powers.
Now the value ofH at the right end of the cable will be expressed in power series ofq andh

H(q, h) =
M∑

i=0

M∑

j=0

Hijq
ihj. (25)

TheHij ’s may be found taking into account thatH = (γΩ)(A + q)/(2ϕ) and recallingϕ andβ definitions. The steps
are analogous to the ones described above to find theR1ij.

The vertical componentV at the right endB of the cable may be obtained from expressionVB = γΩL + H sinh C.
In order to arrive to an expression likeV =

∑M
i=0

∑M
j=0 Vijq

ihj and find theVij ’s one has to first expand the function
sinh C with a power series in terms ofq andh. For the sake of brevity the detailed algebra is not presented herein though
the methodology is completely similar to the one employed up to this point. On the other hand the numerical results are
presented for both component of the tension.
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4. Numerical Results

The static problem of a cable of lengthL = 47 m, A = 40 m, B = 20 m, γΩ = 50 N/m is analyzed with both the
analytical and the power series solution. Figure 4 depicts the variation of the componentsH andV and its resultantT
found with the analytical solution.

Figure 4. Values of horizontal (H) and vertical (V ) components of the tension (T ) at right end of the cable.

Now, and in order to validate the power series solution, a comparison of values of the variableH for different right-end
displacementsq, h, with results from the analytical solution is made. The results found with 6 terms (M = 6) are shown
in Table 1. Next, and to show the strong rate of convergence of the power series, the values ofH are found with the series
taking 20 terms. The results are tabulated in Table 2. As may be observed, the error clearly decreases.

In order to show the convergence behavior of the series, Figure 5 graphics the rate of convergence found by increasing
the number of terms of the power series. Fig. 5 shows the behavior of the vertical componentV of the tension at the right
end of the cable for end displacementsq = −1m andh = −1.5. Additionally the relative error (RE) was found for the
tensionT and its horizontal and vertical componentsH andV resp., for end displacementsq = 0.5 m andh = 0.7 m
(RE = (Fpowerseries − Fanalytical)/Fanalytical, in whichF stands forT , H or V ). The plots are shown in Fig. 6

5. Final comments

The governing equations governing the dynamics of a planar cable have been derived. The particular case of the static
problems was studied in detail. The algebra to get the well-known analytical solution was included. Since the values of the
tensionT are of particular interest and specially at the right end of the table, a power series approach was employed to find
the horizontal and vertical componentsH andV respectively, in terms of the horizontal and vertical displacementsq and
h. These expansions allow the coupling of the cable and other structures such as a floating platform with the advantage of
fully consideration of the cable non-linearity without truncations during the derivation of the expressions. The numerical
results and comparisons show the excellent behavior and strong convergence rate. The authors are at present dealing with
the complete dynamic equations in which the separation of variables will be done by extended trigonometric series.
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Table 1. Values ofH (horizontal component of the tension at endB). Analytical (first line) and power series (second line)
solutions and absolute error (third line).M = 6 for power series.

h
q -1.5 -0.7 0 0.3 1.0

1231.21877600921 1284.48033656466 1340.20934623680 1367.35123947239 1440.30832950405
-1.0 1231.16274547663 1283.94306606489 1339.08492477732 1365.74862500379 1436.22914063641

0.05603053258 0.53727049977 1.12442145948 1.60261446860 4.07918886764
1334.30760171697 1400.67747201123 1471.49261879978 1506.52212261029 1602.56540278897

-0.5 1334.20396604485 1400.66541925759 1471.47130514346 1506.49209767896 1602.47586586772
0.10363567212 0.01205275364 0.02131365632 0.03002493133 0.08953692125

1459.07077679911 1544.32219807111 1637.71957882454 1684.92453865689 1818.09315231654
0 1458.78431394112 1544.31793781021 1637.71890155521 1684.92392464405 1818.05217538067

0.28646285799 0.00426026090 0.00067726933 0.00061401284 0.04097693587
1614.94082521587 1729.08746747598 1858.95306615241 1926.70940686528 2126.56788962459

0.50 1613.93424570183 1729.06159743322 1858.92333905975 1926.66590645836 2126.28961594003
1.00657951404 0.02587004276 0.02972709266 0.04350040692 0.27827368456

1818.42506778035 1980.75497850702 2176.55546015110 2284.13883981463 2627.82023813940
1.00 1813.90753613644 1979.64759339656 2174.12905389491 2280.49583546429 2616.10864292883

4.5175316439099 1.1073851104600 2.4264062561897 3.6430043503401 11.7115952105701

Figure 5. Convergence rate of power series. Vertical componentV .
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Table 2. Values ofH (horizontal component of the tension at endB). Analytical (first line) and power series (second line)
solutions and absolute error (third line).M = 20 for power series.

h
q -1.5 -0.7 0 0.3 1.0

1231.21877600921 1284.48033656466 1340.20934623680 1367.35123947239 1440.30832950405
-1.0 1231.21879969065 1284.48034982982 1340.20935316770 1367.35124170462 1440.30823465208

0.00002368144 0.00001326516 0.00000693090 0.00000223223 0.00009485197
1334.30760171697 1400.67747201123 1471.49261879978 1506.52212261029 1602.56540278897

-0.5 1334.30761191396 1400.67747792172 1471.49262219929 1506.52212522238 1602.56540409754
0.00001019699 0.00000591049 0.00000339951 0.00000261209 0.00000130857

1459.07077679911 1544.32219807111 1637.71957882454 1684.92453865689 1818.09315231654
0 1459.07078113885 1544.32220037860 1637.71958002143 1684.92453952841 1818.09315268978

0.00000433974 0.00000230749 0.00000119689 0.00000087152 0.00000037324
1614.94082521587 1729.08746747598 1858.95306615241 1926.70940686528 2126.56788962459

0.50 1614.94082580665 1729.08746823543 1858.95306649124 1926.70940709275 2126.56788969978
0.00000059078 0.00000075945 0.00000033883 0.00000022747 0.00000007519

1818.42506778035 1980.75497850702 2176.55546015110 2284.13883981463 2627.82023813940
1.00 1.818.42488860364 1980.75497845012 2176.55545712564 2284.13882938468 2627.81995970836

0.00017917671 0.00000005690 0.00000302546 0.00001042995 0.00027843104

Figure 6. Relative error in tensionT , horizontal (H) and vertical (V ) components.


