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Abstract. As is known, low tension cables (or chains) adopt a catenary curve when subjected to self weight. The dynamic
problem governing equations are derived in which the static problem of the slack cable is included. The cable is fixed
at one end Q) while the other end ), not fixed, is at a different level. The slope at the fixed end is assumed arbitrary.
When this type of cable or chain is employed as a mooring device, it is necessary to know the forces for each geometric
configuration specially at end. First, the analytical solution is stated and from it values of the horizontal and vertical
forces at end B may be found for different values of static displacemgnt®Kizontal andh, vertical) at that end. On

the other hand, being this the main goal, a power series approach was employed to obtain explicit expansions of the
horizontal and vertical forces in terms of g and h. The availability of these expansions allows us to introduce these forces
in a quasi-static analysis of the general problem of a floating platform. The series may be introduced in the dynamic
differential equations that govern the strongly non-linear motion of the platform.

1. Introduction

Cables are employed in different type of structures such as roofs, bridges and as mooring devices (see for instance
Esmailzadeh and Goodarzi (2001), Irvine (1992), Sannasiral. (1998), Smith and MacFarlane (2001) and Tibert
(1999)). Since cable or chain structures are in general very flexible, a geometrically nonlinear problem should be solved.
Their highly non-linear behavior hardly can be modeled using a standard Galerkin technique. In structural analysis
the finite element method is an extended tool. However special elements for cables or chains are often not available
in commercial finite element programs. Usually the single cable is modeled by other elements but this approach may
lead to numerical instabilities of the algorithm. Alternatively, analytical solutions may provide of more accurate and
robust results. The cable non-linearity arises from the very low bending stiffness of the cable deriving in a strongly
geometric nonlinearity rather than a material type. This situation results in difficulties when modeling both cable statics
and dynamics.

It is thought that Galileo has been the first in address the curve of a suspended cable under its own weight by mid.
S.XVII. However the equation of theatenaria(the curve assumed by a perfectly flexible cable supported at its ends
and subjected to the gravitational forces) was derived by Leibniz, Huygens and John Bernoulli by 1691, responding to a
challenge put out by James Bernoulli to find an expression of the chain curve, as Irvine (1992) refers.

The present paper deals with a power series approach to the solution of the cable end forces and the exact curve as
an alternative to the catenary expression. The configuration studied is the following. The cable is assumed inextensible
and fixed at one endA4) while the other endB), not fixed, is at a different level. The slope at the fixed end is assumed
arbitrary. When this type of cable or chain is employed as a mooring device, it is necessary to know the forces for each
geometric configuration specially at end B. The motivation of this solution is to couple it to the study of the dynamics of
a floating platform moored with slack cables. The latter was addressed with a cable quasi-static model for instance by
Esmailzadeh and Goodarzi (2001) and Rosales and Filipich (2006). In both references the restriction of a null slope at
one end was included. This assumption leads to a simplified algebra. This limitation is herein overcome since the tangent
at the left end is assumed arbitrary.

First, the dynamic problem of the above-described cable is stated. The static case is obviously included in the govern-
ing equations. The well-known analytical solution arise from its solution. The finding of the forces & enoff interest.

On the other hand, being this the main goal, a power series approach was employed to obtain explicit expansions of the
horizontal and vertical forces in terms @fandhi (horizontal and vertical displacements, respectively). The authors have
used this approach systematically in strong non-linear problems (Filigieth. (2004) and Rosales and Filipich (2006)).

The availability of these expansions allows us to introduce these forces in the quasi-static analysis of the general prob-
lem of a floating platform. The series may be introduced in the dynamic differential equations that govern the strongly
non-linear motion of the platform.
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2. Dynamics of a slack cable: governing equations

Figure 1 describes the cable under study whekeY') are fixed axes andz, y) are related to the first system by
r =X +wuwandy =Y + v. u andv are displacements of a poift(X,Y") ((arbitrarily) located at the reference axis
Y = 0) at timet, to an instant positioP(x, y).

(v.Y)
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P Qg
P{X.)Y) (x.Y)

Figure 1. Cable configuration. Mass density per unit lengtnd cross-sectional aréaare assumed constant.

Let us analyze a cable portiahs as shown in Figure 2. Since the inextensibility of the cable is assumed, it is true that
As = AX. Also it is convenient to definél = T cos 8 (horizontal component) and’ = T sin # (vertical component).
The application of Newton’s second law and the limit faxs — 0, lead the following equations that govern the dynamic
equilibrium of an inextensible cable,
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Figure 2. Cable portiod s. Originally portionAX atY = 0.

Vx = pQo —py
where(-)x = d(-)/0X and(-) = 8(-)/dt. The horizontal and vertical components of an eventual (conservative) load

are denotegh; andpy respectively. The vertical load may be separated intg an eventual vertical external load and
self-weighty(2, i.e.py = gy — ¥§2. After geometric considerations, it may be deduced that
de dz . dy dy
== )

COS@ZEZd—X; ; siné 75— ax
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but sincer = X + v andy = Y + v, the following is true
cos =1+ ux; sinf = vy €))
If we define(-)’ = % we know that(-)x = (-)'zx = (-)'(1 + ux) = ()’ cos 6§ and the next statements can be deduced
1
cos = —— (a); tanf = (b) 4)
11—

Also, after using Pitagoras, we have
1 1
cos?f +sin’f =1 = ux+§(u%( +0%) =0= u'+§(vl2—u'2):0. (5)

The second of Egs. (5) may be seen from other point of view. In effect this is equivalent to set the inextensibility
conditionex = 0. Recall that, in general) < 1 +ex = (1 + 2Exx)"/? beingExx = ux + 3(u% +v%). Then if
ex = 0= Exx = 0. The system of equations for the particular caspwf= —Q andpy = 0 is written as

Hx — pQii=0

Vx — pQv = Q)

2ux +u% +v% =0
Hux —V(1+ux)=0

(6)

The last of Egs. (6) is derived from the fact that at palt(see Fig. 1)V/H = tanf and making use of Egs. (3).
The unknowns of the problem ate= u(x,t), v = v(x,t), H = H(x,t) andV = V(z,t). The authors are at present
working on the solution of this DAE (Differential-Algebraic equations) (Egs. (6)). Since we are dealing with partial
differential equations, a separation of variables is performed with a methodology named WEM (Whole Element Method)
(Rosales and Filipich, 2002) which makes use of expanded series of trigonometric functions. A popular approach is the
finite element method to solve the dynamic problem. However particular problems should be overcome when dealing
with slack cables (see for instance Tibert (1999)).

In the next section, the static problem derived from the above-stated dynamic one, will be presented and solved in both
a classical way and using a power series expansion.

3. Statics of a slack cable: derivation of the governing equations and solutions

If we assumeny = 0 andqy = 0 as well as neglect the inertia terms (i#&.= 0 andé = 0) in Eq. (1), the static
problem of a slack cable subjected to its own weight derives. Consequently

Hx = 0= H = constant (a); Vx =+ (b) (7)
3.1 Analytical solution

From Eq. (7.b) and sinc¥ = H tan# = Hv' we obtain

g

(UI)XZﬁﬁv”Z—Cose:ﬁ\/l—i—v’sz”—ﬁ\/l—i—v’Q:O (8)

wheres = 42/ H. After successive integrations and setting the boundary conditioh = 0, the following well-known
solution yields,

v = %[cosh(ﬁx + C) — cosh C] 9)

From the inextensible condition of the cables, (last of Egs. (5)) we obtaia 1++/1 + v2. After imposing the boundary
conditionu(0) = 0 the solution for displacement(x) is obtained,

u(z) =2 — %[sinh(ﬁx + C) —sinh (] (10)

Let us denote' = cosh C' ands = sinh C, and sor = /1 + s2. Then the two solutions(x) andv(z) write

v(z) = %[7‘ - (cosh Sz — 1) + s - sinh Bx] ; (a) u(x) =2 — %[7‘ -sinh Bz + s - (cosh Bz — 1)] (b) (11)
At this point, the values off andC remain unknown. It is true that at = a, v(a) = b andu(a) = —(L. — a) (see

Figure 3), wheres = A + ¢ andb = B + h, ¢ andh are arbitrary right end displacements.
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Figure 3. Cable positiond.. is the cable lengthA, B are the coordinates of the right end of the cable once positioned.
a, b are the coordinates of the right end for arbitrary displacemegritsat this end.

From the Egs. (11), we have:

rcosh Ba + ssinh Ba = Bb+7r (a) rsinh Sa + scosh Ba = BL. +s  (b) (12)
Now, in order to find3 andC' we will solve the following system im ands (see Egs. (12))
cosha — 1 sinh Ba T\ b
( sinh fBa coshﬁa—1>'<s>_ﬁ'<ljc> (13)

After some steps we end up with the next relationship that must be satisfigd by
sinhg /L2102
%2} o a
in which ¢ = a/2 was introduced. Given = A 4+ g andb = B + h for certain values of andh (see Fig. 3), the above
transcendental equation is solved fpand then fromp and definitions, one is able to obtain the value of the horizontal

componentH of the tension at the right end of the cable. From the solution of system (13) it is possible t0 fivith
the next expression

(14)

C= arcsinh(—g(Lc + pb)> . with p = —coth ﬁ—; (15)

OnceC is known the value of the vertical componetit of the tension at the right end of the cable is obtained by
calculating the following

V =Hv where v’ = sinh(2p + C) (16)

With the steps above described, the problem of finding the horizontal and velieald V' components of the tension
T at the right boundary is solved. Obviously, the tension may be found at any point of the cable as well as the position of
the cable for a given configuration (for agyandh) (Egs. (9) and (10)).

3.2 Power series solution

Since our interest is to findl andV in terms ofg andh, a power series approach will be proposed. Let us denote the
right hand member of Eq. (14.a) ds= f(q, h)

2
1— B+h
_ V- LI - (B+h)y? (L)
f=flgh)= . A+ = AL+q (17)

where the values of ., A, B (see figure 3) are data. Two variableg andw, are introduced

o 1_<B+h> ZN’“hk (a) :A+q ZDkq (b)

Le

With this notation it is possible to find the coefficients of a series in termpafdh

M M -
flg, h) = wpwg = Z Z Ki;q'W (18)

i=0 j=0
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where thek;; may be found by a Taylor expansion. On the other hand, with %,

sinh MM o
- L= flah) =3 Kigih. (19)

i=0 j=0

A Taylor’s expansion of the left-handmost member yields

F(<p)551n;w=1+‘§—!2+‘g—?+‘§—?+... (20)
In turn, as is observed, an expansion of powersd$ needed in terms aof andh. This is written as follows
M M
oF = Z Z Ryijq'h. (21)

i=0 j=0
In particulare = > ;" > ~;_, Riiq'h7 . Itis possible to find

Aij =D k—ae,. eBkij

Raij = - (22)
1
where ~; = m, k=2,4,6,... and Ai; = (Ki; — diodjo)

The coefficientsR,;;'s may be found by means of an iteration procedure and afterward£thgs are found from the
following expressions

i J i J

R(nt2)ij = Z Z RyrsRo(i—r)(j—s): M =2,4,6. .. Ryij = Z Z RirsRi(i—r)(j—s) (23)
r=0 s=0 r=0 s=0

After working out this expression, the following expressions are found

1=7=0:
R100 = v/ Raoo
1 =0:
Rygj = |:R20j - Zi:l RlOsRIO(j—s)} /2R100
(24)
7=0:
Ry = [Rmo - 2:1 eron—r)o} /2R100
i#0,j#0:
R1ij = {Raij — [2R10jR1i0 + Sos + Sro + Srs]} /2R100
where the summations;,,, are
Sos = S0 N (RiosRuij—s) + RuisRio(—s)) Sro = S0 (RiroRu(i—ryj + RirjRa(i—ry0)
Sre =300 Xl (RupaRi(imr)(-s)
This iterative procedure allows finding and its powers.
Now the value ofH at the right end of the cable will be expressed in power seriesasfd
M M
H(q,h) = ZZHijq’hJ. (25)

i=0 j=0

The H;,’s may be found taking into account th&f = (vQ)(A + ¢)/(2¢) and recallingy and 3 definitions. The steps
are analogous to the ones described above to findihe.

The vertical componerit” at the right endB of the cable may be obtained from expressign = yQ2L + H sinh C.
In order to arrive to an expression liké = Zfio ij\io V;;¢'h? and find theV;;’s one has to first expand the function
sinh C' with a power series in terms gfandh. For the sake of brevity the detailed algebra is not presented herein though
the methodology is completely similar to the one employed up to this point. On the other hand the numerical results are
presented for both component of the tension.
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4. Numerical Results
The static problem of a cable of length= 47m, A = 40 m, B = 20 m, Q2 = 50 N/m is analyzed with both the

analytical and the power series solution. Figure 4 depicts the variation of the compdifeartd I and its resultant’
found with the analytical solution.

4500 -~

4000

3500

3000 -

Figure 4. Values of horizontal{) and vertical {') components of the tensiofl§ at right end of the cable.

Now, and in order to validate the power series solution, a comparison of values of the vadfidbtaifferent right-end
displacements, h, with results from the analytical solution is made. The results found with 6 teihs-(6) are shown
in Table 1. Next, and to show the strong rate of convergence of the power series, the valli@esefound with the series
taking 20 terms. The results are tabulated in Table 2. As may be observed, the error clearly decreases.

In order to show the convergence behavior of the series, Figure 5 graphics the rate of convergence found by increasing
the number of terms of the power series. Fig. 5 shows the behavior of the vertical componétite tension at the right
end of the cable for end displacemenpts= —1m andh = —1.5. Additionally the relative error R E’) was found for the
tensionT" and its horizontal and vertical componetfsand V' resp., for end displacemenjs= 0.5 m andh = 0.7 m
(RE = (Fpowerseries — Fanalytical)/ Fanalytical, IN Which F' stands fofT’, H or V). The plots are shown in Fig. 6

5. Final comments

The governing equations governing the dynamics of a planar cable have been derived. The particular case of the static
problems was studied in detail. The algebrato getthe well-known analytical solution was included. Since the values of the
tensionI” are of particular interest and specially at the right end of the table, a power series approach was employedto find
the horizontal and vertical componerisandV respectively, in terms of the horizontal and vertical displacemgatsd
h. These expansions allow the coupling of the cable and other structures such as a floating platform with the advantage of
fully consideration of the cable non-linearity without truncations during the derivation of the expressions. The numerical
results and comparisons show the excellent behavior and strong convergence rate. The authors are at present dealing with
the complete dynamic equations in which the separation of variables will be done by extended trigonometric series.
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Table 1. Values off (horizontal component of the tension at eBjl Analytical (first line) and power series (second line)

solutions and absolute error (third liné)/ = 6 for power series.

h

-1.5

-0.7

0

0.3

1.0

1231.21877600921
1231.16274547664
0.05603053258

| 1284.4803365646¢
1283.94306606484
0.53727049977

1340.2093462368(
) 1339.08492477732
1.12442145948

1367.3512394723
» 1365.7486250037
1.60261446860

) 1440.3083295040%
) 1436.2291406364
4.07918886764

1334.30760171697
1334.20396604484
0.10363567212

[ 1400.67747201123
1400.66541925754
0.01205275364

1471.4926187997¢
) 1471.4713051434¢4
0.02131365632

1506.5221226102
1506.4920976789¢
0.03002493133

) 1602.5654027889]
5 1602.47586586772
0.08953692125

1459.07077679911
1458.78431394114%
0.28646285799

0.00426026090

| 1544.32219807111
» 1544.31793781021

1637.71957882454
1637.71890155521
0.00067726933

1 1684.9245386568¢
| 1684.923924644071
0.00061401284

) 1818.09315231654
b 1818.0521753806]]
0.04097693587

0.50

1614.94082521587 1729.0874674759¢
1729.06159743322

1613.93424570183
1.00657951404

0.02587004276

1858.92333905974
0.02972709266

1858.95306615241 1926.70940686528 2126.56788962454
1926.66590645836¢ 2126.28961594003

0.04350040692

0.27827368456

1.00

1818.42506778034

1980.75497850702
1813.90753613644 1979.6475933965¢

2176.5554601511(

2284.13883981463 2627.8202381394(
2174.12905389491 2280.49583546429 2616.1086429288]

4.5175316439099| 1.1073851104600| 2.4264062561897| 3.6430043503401| 11.7115952105701

Series Convergence (q=-1m,h=-1.5m)

1877.4
1877.2

1877
1876.8
1876.6
1876.4
1876.2

1876
1875.8

V: Vertical component (N)

8 10 15 20

Number of terms

Figure 5. Convergence rate of power series. Vertical compovient
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Values off (horizontal component of the tension at eB)l Analytical (first line) and power series (secondline)

solutions and absolute error (third liné)f = 20 for power series.

h

-1.5

-0.7

0

0.3

1.0

1231.21877600921
1231.21879969065
0.00002368144

1284.4803365646¢

1284.48034982982

0.00001326516

1340.2093462368(
1340.2093531677(
0.00000693090

1367.3512394723
1367.3512417046
0.00000223223

) 1440.30832950404
? 1440.3082346520¢
0.00009485197

1334.30760171697
1334.307611913964
0.00001019699

1400.67747201123

1400.67747792172

0.00000591049

1471.4926187997§
1471.4926221992
0.00000339951

3 1506.52212261024
) 1506.52212522234
0.00000261209

) 1602.56540278897
3 1602.56540409754
0.00000130857

1459.07077679911
1459.07078113885
0.00000433974

1544.32219807111

1544.3222003786(
0.00000230749

1637.71957882454
1637.7195800214
0.00000119689

} 1684.9245386568¢
3 1684.9245395284]
0.00000087152

) 1818.09315231654
| 1818.0931526897¢
0.00000037324

0.50

1614.94082521587
1614.94082580665
0.00000059078

1729.0874674759¢
1729.08746823544
0.00000075945

1858.95306615241
1858.95306649124
0.00000033883

| 1926.70940686524
} 1926.70940709271
0.00000022747

5 2126.56788962454
b 2126.5678896997¢
0.00000007519

1.00

1818.42506778035
1.818.42488860364
0.00017917671

1980.75497850702
1980.75497845012

0.00000005690

2176.5554601511(
2176.55545712564
0.00000302546

2284.13883981463
} 2284.1388293846¢
0.00001042995

3 2627.8202381394(
3 2627.8199597083¢
0.00027843104

x 107

Error between power series and analytical solutions

—— Vrel. error
T rel. error

T
—— Hrel. error

q=-1

m, h=0,

relative error

10

I
12
Number of terms

14

18

20

Figure 6. Relative error in tensidh, horizontal () and vertical {) components.



