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Abstract.  In this paper, an approach to establish the volumetric accuracy of CMMs, which permits interpolation 
between measured points, is presented. Mathematical and statistical techniques, such as Response Surface 
Methodology, have been used to represent the relationship between each volumetric error component (Ex, Ey and 
Ez) at a point, within the measuring volume, and the co-ordinates of the point (Xi, Yi, Zi). Also, a method to derive the 
parametric errors of a CMM from the volumetric error data was developed and applied. The measured data 
obtained by applying a modular space frame on a three-axis Coordinate Measuring Machine (CMM) are used to fit 
mathematical models that represent each volumetric error component of the machine under test, then, the parametric 
errors of that machine are derived from the volumetric error data.  
 
Keywords:  Coordinate Measuring Machines, Parametric Errors, Response Surface Methodology  
 
1.    INTRODUCTION 
 
         Coordinate measuring machines (CMMs)  are in widespread use as precision measurement tools which are 
particularly useful when the component to be measured has a complex shape (Peggs  et.al. 1999) [1].  To satisfy 
traceability requirements of most industrial quality system, CMM must be periodically evaluated. That is an essential 
condition for analysing whether the CMM maintains the manufacturer specifications. Also, evaluation of CMM 
performance is necessary for obtaining correct measuring results. However, it is important to note that CMM 
performance evaluation is rather complicated as CMMs are more complex measuring device then most conventional 
measuring instruments (Silva and Burdekin, 2002).This paper present a methodology to deriving the parametric 
errors of a co-ordinate measuring machines from the mathematical models fitted to represent the volumetric error 
components. These error components are obtained by measuring a novel form of space frame, which has been 
designed and manufactured as part of this research work (Silva and Burdekin, 2002). This space frame has the form 
of a tetrahedron, which contains a sphere at each apex. The base of the tetrahedron comprises a ball plate that 
contains three spheres. Each tetrahedron contains three magnetic ball links. A simple magnetic ball link comprises a 
link, connecting magnetically, to two spheres. One sphere is located on the ball plate and the other at a space point 
where three links are connected together, figure 1. 
 

 
 
Figure 1.  Modular space frame 
 
 
 



2.  GEOMETRIC ERRORS OF CMMS. 
 
     The geometric error of a CMM  is the error induced at the probe position caused by  dimensional  and form errors of 
the machine components such as a slide. The geometric deflections of movement of a  machine component can be 
defined by 6 parameters. This is similar to a body in a space that has six degrees of  freedom,  as defined by Weck  (1980) 
. These are: 3 translational and 3 rotational errors as shown in figure 2. 

 
Figure 2.   Parametric errors of a guideway moving along X axis.  
   
         When a machine component moves on the machine guideway it will experience geometric errors as result of 
existing geometric inaccuracy between the machine component and the guideway. In this research, for convenience of 
notation, the  translational errors is represented by δ and the rotational errors by E. In addition, two characters are used. 
The first one indicates the direction of the error and the second one indicates the direction of  movement. For instance,  
δx(Y)   means the straightness error component in the X direction when moving along  the Y axis. 
           
a) Positional errors 

     Generally, the positional error is the scale error plus the Abbe error (Bryan, 1979)  which arise from the Abbe offset 
and associated angular errors. Hence, the magnitude and direction of the positional error depend upon the location of 
measurement within the measuring volume. 
 
b) Straightness errors 
 
     The out straightness of the guideway gives straightness error in the movement of the machine element that is moving 
on the guideway. The straightness errors are influenced by the associated rotational errors on the machine. There are two 
cases: the horizontal straightness error,  δy(X), and the vertical straightness error δz(X), respectively along the X axis. 
Similarly,  δx(Y),  δz(Y) and   δx(Z),  δy(Z) are defined along the Y and the Z axis, respectively. The 6 straightness errors 
are thus considered in a 3 axis machine.                
 
c) Rotational (or angular) errors. 
 
     There are 3 rotational errors along the guideway (or the X axis). If the rule of the right hand screw is adopted to 
describe the rotational movements, the direction of feed determines the rotation axis. The Roll error, Ex(X), is associated 
with the rotation about the guideway. The pitch error, Ey(X), is associated with the rotation about the horizontal 
transverse direction (direction of the Y axis). The Yaw error, Ez(X), is associated with the rotation about the vertical axis 
(the Z axis). It should be that these rotational errors contribute to the total volumetric error with the Abbe offset. 
Similarly, the rotational errors can be introduced along the Y and Z axes. They are Roll errors (Ey(Y), Ez(Z)), Pitch errors 
(Ex(Y), Ey(Z)) and Yaw errors (Ez(Y), Ex(Z)), along the Y and Z axis, respectively. Thus, 9 rotational errors are 
considered in a 3 axis machine.  
 
d) Squareness errors 
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     When the multi axis movement is introduced, the misalignment of each axis gives the squareness error (or 
orthogonality error). In the three axis machine, three squareness (or orthogonality) errors are defined in the XY, YZ and 
XZ plane. The planar squareness error, α, between X and Y axis, is defined as the out of squareness between axes X and 
Y. The vertical squareness error, β1, is defined as the out of squareness between the axes  X and Z. The vertical 
squareness error, β2, is defined as the out of squareness between the axes Y and Z. All the squareness errors are 
considered as positive (+) when they are outward from the right angle (90 degree). 
     Therefore, twenty-one error components have to be considered in a three axis machine. They are: three  positional 
errors, six straightness errors, nine rotational errors and three squareness errors. Each error component, such as yaw, 
roll, pitch, straightness, squareness and positioning error, is measured by conventional measuring equipment, for 
example, laser interferometer, electronic level, straight edge and square. It is important to note that the conventional 
techniques used to measured the parametric error components of a machine is time consuming, requires expensive 
equipment and special skill to operate that equipment, for instance, laser interferometer system  and not included the 
errors of software and probe (Lee and  Ferreira, 2002); (Umetsu et al., 2005) ; (Schwenke et al., 2005). 
      Therefore, a critical need exists in order to overcome disadvantages that existing techniques, to measured the 
parametric errors of CMMs, present. In this regard, it is necessary to developed a new technique that  is capable of 
determining the parametric errors from the volumetric error components E(x), E(y) and E(z). Also, the new 
technique should require a minimum number of mechanical transfer standard and should be simple to use and  
measure.  This paper presents a new approach to determine the parametric errors of CMMs  by using mathematical 
models fitted to represent the volumetric error components of the machine under test. 

 
 

3.    FITTING MATHEMATICAL MODELS TO REPRESENT THE VOLUMETRIC ACCURACY 
 

         Response Surface Methodology (RSM) has been applied to fit a mathematical model to represent the 
volumetric errors of CMMs. RSM, is a collection of mathematical and statistical techniques that are useful for the 
modelling and analysis of problems in which a response of interest is influenced by several variables and the 
objective is to optimise this response (Montgomery, 1991),( Box et. al. 1978). By comparing the calibrated and 
measured tetrahedron configurations of the modular space frame it is possible to determine the volumetric error 
components (Exi,Eyi,Ezi) of the machine under test. The volumetric error at each point defined by the modular space 
frame is given as follows: 
             Exi=Xmi - Xi                                                                                                                                                      (1) 
             Eyi=Ymi - Yi                                                                                                                                                      (2) 
             Ezi=Zmi - Zi                                                                                                                                                       (3) 
where, 
 Xi,Yi,Zi,  are the calibrated co-ordinates of the  points generated by the calibrated modular space frame. 
 Xmi,Ymi,Zmi, are the measured co-ordinates of the points generated by the measured  modular space frame.  
         The general equation that represents each volumetric error component (Ex, Ey, Ez) can be written either by 
using a first-order mathematical model, that is, 
 
  E X X X X X Xk ko k k k( , , )1 2 3 1 1 2 2 3 3= + + +β β β β                                                                                    (4) 

 
or by using a second-order mathematical model,  
 
that is, 
 
E X X X X X X X X X

X X X X X X
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β β β

                                 (5) 

 
where, k=x, y or z 

     In both equation (1) and (2) the coefficients β�s are to be estimated by the method of  
least squares where the basic formula is given by the following equation: 



 
                    β k

T T
kXX X Y= −( ) 1                                                                                                                           (6)                             

where, 
k=x, y or z and it is related to X, Y and Z direction , respectively. 
Yk= the vector of error component Ex, Ey or Ez in X, Y or Z direction, respectively. 
 XT=  Transposed of matrix X 
X=  the matrix of independent or predictor variables X1, X2 and X3.       
X1, X2, X3  = coded co-ordinates of the ith experimental point in the X, Y and Z direction, respectively.  
      
3.1   Deriving the parametric errors from the mathematical models fitted to  
        represent the volumetric error components. 
 
         Two cases have been considered to represent the volumetric error component in the X, Y and Z direction. 
Initially a first-order mathematical model was fitted. Next, a second-order mathematical model was developed. In 
both cases the residuals (Yi - Yif) were plotted against the fitted value, Yif, obtained from the fitted mathematical 
model.  By analysing the residual plots as shown in Silva and Burdekin (2002) it was found that the second-order 
model more adequately represents the measured data. The analysis of variance concerning the second-order 
mathematical model was established and it was observed that the overall regression is statistically significant. 
Therefore, the second-order mathematical model has been selected to represent the volumetric error component in 
the X, Y and Z direction (Silva and Burdekin , 2002).  
      Once the mathematical models that represent the volumetric error components (Ex, Ey, Ez) of a CMM has been 
fitted,  it is possible to derived the parametric errors of the machine under test. To achieve this objective a particular 
method has been developed and applied as part of this research. This method is founded on the physical meaning of 
each parametric error component. Basically, the following steps must be performed when applying the proposed 
method. First, a reference plane within the measuring volume of the machine is selected. Second, measurement lines 
on the reference plane are defined. These measuring lines are defined by taking into account the physical meaning of 
each parametric error to be determined. Third, the boundary conditions are applied on the fitted equations that 
represent the  volumetric error components(Ex, Ey, Ez). The parametric errors can be derived as following: 
 
- Positioning error in X direction, δx(X), at plane Z=0. 
        Boundary conditions:     Z=0, Y=0, 0<=X<=Xmax,   Then,      

 δ X Z YX Ex X Y Z( ) ( , , );= = = = =0 0 0 0                                                                                                                 (7) 
 
- Positioning error in Y direction, δy(Y), at plane Z=0.  
        Boundary conditions:    Z=0, X=0, 0<=Y<=Ymax , Then,  

δY Z XY Ey X Y Z( ) ( , , );= = = = =0 0 0 0                                                                                                                    (8) 
 
- Positioning error in Z direction, δz(Z), at plane X=0. 
   Boundary conditions: X=0, Y=0, 0<=Z<=Zmax , Then,                  

δZ X YZ Ez X Y Z( ) ( , , );= = = = =0 0 0 0                                                                                                                    (9) 
 
b) Straightness errors 
  - Straightness error in the X direction when moving along the Y axis, δx(Y), at  plane Z=0.      
     Boundary conditions: Z=0, X=0, 0<=Y<=Ymax     Then, 

     δ X Z XY Ex X Y Z( ) ( , , );= = = = =0 0 0 0                                                                                                            (10) 
  
  - Straightness error in the direction Y when moving along the X axis, δY(X), at plane Z=0. 
 Boundary conditions:  Z=0,   Y=0, 0<=X<=Xmax , Then, 

     δY Z YX Ey X Y Z( ) ( , , );= = = = =0 0 0 0                                                                                                            (11) 
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 - Straightness error in the direction X when moving along the  Z axis, δX(Z), at plane  Y=0. 
Boundary conditions:  X=0, Y=0, 0<=Z<=Zmax ,Then, 

     δ X Y XZ Ex X Y Z( ) ( , , );= = = = =0 0 0 0                                                                                                            (12) 
 
- Straightness error in the Y direction when moving along the Z axis, δY(Z), at  plane  X=0. 
 Boundary conditions: X=0, Z=0, 0<=Y<=Ymax , then, 

     δY X YZ Ey X Y Z( ) ( , , );0 0 0 0= = = =                                                                                                              (13) 
 
- Straightness error in the direction Z when moving along the X axis, δZ(X), at plane Y=0. 
Boundary conditions: Y=0, Z=0, 0<=X<=Xmax , then, 

     δZ Y ZX Ez X Y Z( ) ( , , );0 0 0 0= = = =                                                                                                              (14) 
 
- Straightness error in the direction Z when moving along the Y axis, δZ(Y), at plane  X=0. 
 Boundary conditions: X=0, Z=0, 0<=Y<=Ymax , then, 

     δZ X Z ZY E X Y Z( ) ( , , );= = = = =0 0 0 0                                                                                                            (15) 
 
c) Angular errors 
 
   - Pitch and Yaw errors   
       In this research, a method to determine pitch and yaw errors has been applied. This method consists in deriving 
the positioning error along two measuring lines that are parallel to the axis of motion. A distance, h, in the 
appropriated orthogonal distance, separates these measuring lines. Pitch and yaw errors can be calculated by using 
the following equations: 
  - Pitch error in X axis 
 

      

E X
X X

h

Ex X Y Z h Ex X Y Z
h

Y

X Z h Y X Z Y
( )

( ) ( )

( , , ) ( , , )

, ,
=

−

=
= = − = =

= = = =δ δ0 0 0

0 0 0
                                                                        (16)                                

      
Pitch errors in Y and Z axes can be determined following similar procedure.  
 
- Yaw error in X axis 
 

  

E X
X X

h

Ex X Y h Z Ex X Y Z
h

Z

X Y h Z X Y Z
( )

( ) ( )

( , , ) ( , , )
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=

−
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Yaw error in Y and Z-axes can be determined following similar procedure. 
                                           
- Roll error in X axis 
 



     The roll error of the X axis can be derived by considering the straightness error, δY(X), on two parallel planes, 
which are separated by an orthogonal distance, h. That error can be calculated by the following equation: 
 

E X
X X

h
Ey X Y Z h Ey X Y Z

h

X

Y Z h Y y Z Y
( )

( ) ( )

( , , ) ( , , )

, ,
=

−

=
= = − = =

= = = =δ δ0 0 0

0 0 0
                                                                            (18) 

 
Roll errors in Y and Z axes can be determined following similar procedure. 
 
d) Squareness errors between axes of motion 
 
     In this research, a method to determine the squareness errors α, β1 and β2 in the planes XY, XZ and YZ, 
respectively, has been proposed. Basically, this method uses the straightness errors, which are obtained from the 
mathematical models fitted to represent the volumetric error components. To describe this method, let us consider 
the straightness errors δx(Y) and δy(X) at plane XY. The slope of the best fit least square line to the curves defined by 
δy(X) and δx(Y) are θyx and θxy , respectively. The squareness error α is given by the following equation: 
              α=θyx-θxy                                                                                                                                                       (19) 
     Similarly, by applying the same method the squareness errors β1 and β2  can be determined. These errors are 
defined as follows: 
      β1=θxz-θzx                                                                                                                                                               (20) 
      β2=θyz-θzy                                                                                                                                                               (21) 
where, 
θxz,θzx,θyz and θzy are the slopes of the best fit least squares line to the curves defined by δx(Z), δz(X), δy(Z) and 
δz(Y), respectively. 
 
3.2    Practical application of the proposed method for determining the  
          parametric errors of  a  tree-axis CMM 
 
            The approach developed in this research was applied on a numerically controlled co-ordinate measuring 
machine of the moving bridge type. The machine has XYZ travels of 600x500x400 mm, respectively. Basically, the 
machine construction comprises: a granite surface table which has a matrix of threaded holes (M10) which is used to 
locate and clamp components to be measured; X axis guideway that consists of a granite straight edge bonded on the 
CMM table; Y axis guideway and a Z axis spindle which are both made from ceramic material. The volumetric error 
data obtained from that practical application are used to establish mathematical models to represent the volumetric 
error components of the CMM. Also, based on the background described by Box (1978)  the adequacy of the fitted 
mathematical models is performed as shown in (Silva and Burdekin , 2002). The mathematical models that have 
been obtained by applying the proposed approach on a three axis CMM are: 
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Ez X X X X X X
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                                                (24) 

           The parametric errors are obtained by using the methodology presented in the  section 2 along with the 
mathematical models represented by the equations 22, 23 and 24. Figures 3, 4 and 5 show the positioning 
errors,δX(X), δY(Y), δZ(Z) in  X, Y and Z direction, respectively. The straightness errors δY(X), and δZ(X) when 
moving along the X axis  are shown in figures 6 and 7, respectively. The straightness errors, δX(Y) and  δZ(Y) when 
moving along the Y axis are shown in figures 8 and 9. Also, Figures 10 and  11  show, respectively, the straightness 
error, δX(Z)  and  δY(Z)  when moving along the Z axis.  
      In figures 12 and 13 are shown the pitch  errors Ey(X) and Ex(Y) when moving  
along the X and Y axes, respectively. These errors were calculated based on the method described in section 4 which 
utilizing the positoning errors δX(X) and δy(Y), respectively, calculated at Z=0 and Z=100.    
     The squareness errors of the  CMM, on which the modular space frame has been applied, were calculated 
following the method described in section . The squareness errors of the   CMM were found to be: 
     squareness error in plane XY            α= -0.05     arc sec 
     squareness error in plane XZ            β1= -5.54    arc sec 
     squareness error in plane YZ            β2= -9.80  arc sec                                                                                                      
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         Figure 3   Positioning error, δx(X). 
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              Figure 4   Positioning error, δy(Y). 
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         Figure 5   Positioning error, δz(Z). 
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         Figure 6   Straightness error, δy(X). 
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         Figure 7   Straightness error, δz(X). 
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         Figure 8   Straightness error, δx(Y). 
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             Figure 9   Straightness error, δz(Y). 
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            Figure 10   Straightness error, δx(Z). 
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               Figure 11   Straightness error, δy(Z). 
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              Figure 12   Pitch error, Ey(X). 
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           Figure 13   Pitch error, Ex(Y) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



4.   CONCLUSIONS 
 

          Response surface methodology (RSM) used in this research to fit mathematical models, which represent the 
volumetric error components, has proved to be an important and effective technique and that a second-order 
mathematical model more adequately represents the volumetric error data obtained by measuring the modular space 
frame. The developed method to derive the parametric errors from the volumetric error data constitutes an efficient 
and rapid tool in diagnosing the sources of error of a CMM. Additionally, the technique developed in this research 
does not have to assume that the CMM under investigation has to behave as a rigid body kinematic system and it can 
be applied to any type of three axis coordinate measuring machines (CMMs). Further research work will be carried 
out in order to applied the present technique for five-axis CMMs. Therefore, the research will focus  on  the design 
and implementation of a new 3D space frame which should be capable to determine the measurement uncertainty of 
five-axis CMMs..  
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