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Abstract. This paper proposes a structural health monitoring procedure using active-sensing of piezoceramics coupled 
in lightweight structures. The approach is based on time-series analysis from the input-output voltages signals 
obtained by patches of piezoceramics (PZTs). The auto-regressive moving average with exogenous input (ARMAX) 
model is used for linear prediction. The damage-sensitive index was defined by the residual ARMAX error. In order to 
establish a threshold value to recognize the actual integrity state of the structure the one-way analysis of variance 
(ANOVA) is performed bended with the Tukey’s multiple comparison procedure. Tests were made in an aluminum 
portal frame structure with three bonded PZTs. The structure is assembled with angle brackets and bolts and, the 
damages were simulated by loosening and tightening different bolts. The diagnoses, which were reached, showed the 
efficacy of the proposed methodology to detect and locate minor structural changes with statistical confidence and 
advantages against classical procedures. 
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1. INTRODUCTION  
 

Due to several reasons, like safe and economical purposes, the structural health monitoring (SHM) reached an 
enormous importance in modern engineering, as for instance, aircrafts, bridges, oilrigs, etc, see Inman et al. (2005) for 
details. Additionally, with the high development of the smart material technology, the concepts of smart structures 
became a reality, mainly with the utilization of piezoceramics actuators (PZTs) and electrical impedance measurements. 
A recent review about the benefits caused by SHM and the challenges to become it in a “plug-n-play” system in real-
world structures can be found in Silva et al. (2007a). Among them, Worden and Dulieu-Barton (2004) mention that the 
detection with statistical confidence of whether damages are presents or not is the most fundamental issue. 

In order to implement robust structural health assessment procedures to separate healthy and damaged conditions 
without deep knowledge about the structural mathematical model, the statistical methodologies have been used, mainly 
to verify hypotheses if groups of indexes are similar or not. Several structural applications have been employing these 
hypotheses testing in damage detection, like the one-way analysis of variance (ANOVA) and the Tukey’s multiple 
comparison, (Silva et al., 2007b). Silva et al. (2007b) applied the ANOVA to detect damage using an index obtained by 
electric impedance measurements in frequency-domain of patches of PZTs. 

However, nowadays there is a trend to investigate indexes more complex, mainly based in time-series input-output 
from PZTs. An example is the contribution of Lynch (2004) that fitted an auto-regressive model with exogenous input 
(ARX) from collected data in the time-domain in a beam structure with bounded PZTs. In the present work is proposed 
a different feature damage-sensitive obtained through ARMAX models. A portal frame structure was utilized as 
experimental test-bed. The ANOVA and multiple comparison tests were handled to provide a clear diagnostic about the 
actual state of the structure. Finally, the results obtained are discussed and further directions are pointed out. 
 
2. ARMAX DAMAGE-SENSITIVE INDEX 
 

The first step in this approach is devoted to the construction of an ARMAX model, for each input voltage, u[k], and 
output voltage, x[k], from healthy states considering the measurements of each PZT. The ARMAX(na,nb,nc) model is 
written by, (Ljung, 1998): 
 

( ) [ ] ( ) [ ] ( ) [ ]keqCnkuqBkxqA x
1

k
11 −−− +−=      (1) 

 
where ex[k] is the error between the measured signal and the output from the prediction model and nk is the time delay 
set to unity. A(q-1), B(q-1) and C(q-1) are the polynomials in the delay operator q-1. This model is called reference base. 
The Burg method or prediction error method (PEM) can be used for estimating the coefficients of the polynomials that 
describe this model: A(q-1), B(q-1) and C(q-1). The orders are considered na, nb and nc, respectively. These orders, in 
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general, are unknown a priori. However, there are several criteria to estimate them. The classical Akaike’s information 
theoretic criteria (AIC) is used in the present paper. 

The next step in this approach consists in to using the model associated with eq. (1), in order to investigate the 
input-output data in unknown condition: 
 

( ) [ ] ( ) [ ] ( ) [ ]keqCnkuqBkyqA y
1

ky
11 −−− +−=      (2) 

 
If the ARMAX model, represented by equation (2), is not a good prediction for the input voltage, uy[k], and output 

voltage, y[k], that are under continual monitoring, then, the residual error ey[k] and its probability distribution should be 
changed statistically comparing with the reference base. It is an indication of a structural variation. The damage-
sensitive index proposed in this analysis considers the ratio of Euclidean norm between the unknown residual error ey[k] 
and ex[k] reference error.  

In this paper the ARMAX model reference is the most representative of the set of healthy data. It means that the 
model using this polynomials A(q-1), B(q-1) and C(q-1) are able to predict with confidence an enormous set of variations 
conditions. In order to choose this reference model is utilized in this paper the analysis of variance and comparison 
procedures. 
 
3. ANALYSIS OF VARIANCE AND MULTIPLE COMPARISON PROCEDURES 
 

The ANOVA procedure evaluates the hypothesis that the all index-features samples have the same mean. The test 
considers the following assumptions about the data: every sample populations are normally distributed; every sample 
populations have equal variance and all observation is mutually independent. Lilliefors hypothesis test and F Levene 
test can be performed to check the initial considerations, (Hogg and Ledolter, 1987). Basically, the ANOVA procedure 
separates the variability in two types: the within and between group sums of squares. Summarily, the results are used to 
assembly the ANOVA table, which can be viewed in the table 1. Details about this variables and its means can be found 
in Hogg and Ledolter (1987) or any basic statistics-engineering book. 
 

Table 1. ANOVA table for completely randomized design. 
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However, it is necessary tests for qualifying which pairs of mean values are significantly different. This information 

is used to characterize the damage situation with statistical confidence. The t-test or z-test are comparison procedures, 
but unfortunately, they are used to compare one particular pre-selected set. If there are k groups, one can make many 
possible paired for comparison; as a matter of fact, there are k(k-1)/2 of them and there are some pitfalls in this 
procedure. Fortunately, in this case, the Tukey's honestly significant difference criterion can be used to perform a 
multiple comparison, (Hochberg and Tamhane, 1987). 
 
4. EXPERIMENTAL TEST DESCRIPTION 
 

Figure 1 shows an aluminum portal frame with a rigid base that was used in the experimental tests. The top beam is 
connected to two vertical beams using aluminum angle brackets and bolts. Three bonded PZTs in the lightweight 
structure were used as sensors/actuators, called PZT1, PZT2 and PZT3. Table 2 shows the geometric dimensions of the 
structure and of the PZT patches. Figure 2 shows a schematic diagram of the measurement setup with the positions of 
PZTs and positions where damages were induced. 
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Figure 1. Smart portal frame and experimental setup. 
 

 
Figure 2. Schematic diagram of the measurement setup, dimensions in mm. It is shown the placement of the PZT 

patches and the positions of damages. 
 

Table 2. Dimensions of the host structure and the PZT patches, based on PSI-5A-S4 (Piezo Systems®, Inc.). 
 

Property Top Beam  Vertical Beam 3 PZTs 
Length 500 mm 250 mm 20 mm 
Width 25 mm 25 mm 20 mm 

Thickness 2.5 mm 2.5 mm 0.267 mm 
 

The input generation and data acquisition were led using a commercial system from Data Physics controlled by 
SignalCalc ACE® software. Two channels were recorded in the time-domain with a sampling rate of 102.4 kHz, 
producing 8192 time samples each. The white-noise input voltage excitations in the PZT patches and the output voltage 
from a circuit used to conditional the response were stored as input and output, respectively. 

The damage states were considered by uncontrolled loosening of different bolts (damage 1 – close to PZT3 in the 
vertical beam; and damage 2 – near to PZT 2 in the top beam). After introducing the damage 1, the bolt was handily 
retightened for the initial condition and in the following the damage 2 was included. Table 3 describes the structural 
conditions investigated. In each condition were stored eight sets of input-output data from PZT1, PZT2 and PZT3; only 
in baseline condition was considered twelve samples data. The baseline data means that the bolts joints were all 
tightened (Healthy condition – test 0). The test 1 was performed to verify false-positive test. These acquisitions were 
collected in different days in order to include some variability of the environmental into the data. Unfortunately, in this 
test one does not had a way to exact control the tightening. It was used a mark to restore the system for the initial 
condition. For further works is been designing a device in order to perform this adjustment. 
 
 
 
 
 



Table 3. Structural conditions (see fig. 2 to observe the locations). 
 

Tests Damage 
Pattern 

Location Number of 
Samples 

Description 

0 Undamaged Undamaged 12  Baseline – Healthy 
1 Undamaged Undamaged 8  False-positive test 
2 Damage 1 Near to PZT3 8  Handily tightening and loosening corner bolt 
3 Damage 2 Near to PZT2  8 Handily tightening and loosening corner bolt 

 
5. RESULTS 
 

The proposed methodology obtains structural health information based on a non-recursive algorithm. After 
acquiring a regular number of measurements, corresponding to a defined period, based on knowledge or safety reasons, 
a set of data is obtained and the SHM process is verified. The samples are, then, classified in groups of undamaged or 
damaged condition. 

For this structure, a previous analysis by AIC led that an ARMAX(6,1,2) model is enough for a suitable prediction, 
see figure 3a. Figure 3b presents the tests of residuals associated with one case of healthy condition. The residual 
analysis shows that the correlation between the output and the residual error from model based remains within the 
confidence interval (99%), except at zero lag. Therefore, the prediction error is close to white noise process. The other 
undamaged cases were very similar. Hence, this set of model for healthy condition may be considered validated. A 
representative residual error from PZT1 with damage 1 (reference base 1) is shown in fig. 4a. Figure 4b shows a normal 
probability plot of ARMAX residual error for this case. Once the data point fall near the line corresponding to the 
normal probability plot, it was reasonable to assume that the ARMAX residual error is asymptotically normally 
distributed. 
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Figure 3. (a) AIC. (b) Residual analysis from model with healthy measurements from PZT1. 
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Figure 4. (a) Residual error from PZT1 with damage 1 (reference base 1). (b) Normal probability plot of ARMAX 
residual error with damage 1 for PZT1. 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

 
One had twelve reference bases (signals from test 0), so it was obtained twelve indexes for each structural condition 

analyzed. An ANOVA procedure was driven for choosing the better reference base for each PZT, in order to detect 
structural variations. Figure 5a shows the results of this computation from PZT1 with all possible values of the index in 
the reference base. Figure 5b presents the multiple comparisons using the ANOVA results for this set. 
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Figure 5. (a) Set of indexes from PZT1 assuming 12 different reference bases for each healthy measurement. (b) 

Tukey’s multiple comparison procedure for choosing which base will be used to predict the series through 
PZT1 data. 

 
Analyzing figure 5b, one can observe that the signals in case 1,11 and 12 are the most representative to be used as 

reference for measurements from PZT1, because its variability within groups were bigger face the other cases. It was 
chosen the case 12 as reference for PZT1. A similar procedure was performed for the others PZTs and, it was obtained 
the cases 9 and 4 for PZT2 and PZT3, respectively. The plots for these cases were omitted in this text for clearness. The 
normalized damage metric charts to all PZTs considering all damages cases are shown in fig. 6. In this plot was 
considered the previous analysis to choose the most representative references. It was assumed that in each structural 
condition group (four tests showed in tab. 3) there was not variation and, the signals were acquired uniformly. These 
cases correspond the baseline (12 first samples), the undamaged (false-positive test – 13 to 20 record data), damage 1 
(21 to 28 samples) and damage 2 (29 to 36). 
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Figure 6. Normalized damage metric chart evolution for each PZT - Ratio between the Euclidean norm of the residual 
error for healthy (base reference) and for unknown condition. The twelve first values are in the undamaged set 

(database). 



 
The four first samples in the database were not considered to produce the matrix of data. This procedure is made 

because the ANOVA used in this work is valid only for equal samples size. Tables 4 to 6 show the one-way analysis of 
variance results. Analyzing the tables, the p-value is zero in all cases, so it is no doubt that one or more of the tests have 
different mean values. 
 

Table 4. ANOVA results for PZT1. 
 

Source of Variability Sum of 
Squares 

Degrees of 
freedom 

Mean Squares F statistic p-value 

Between groups 0.1259 3 0.0420 103.2032 0 
Within groups 0.0114 28 4.0661e-004   
Total 0.1373 31    

 
Table 5. ANOVA results for PZT2. 

 
Source of Variability Sum of 

Squares 
Degrees of 
Freedom 

Mean 
Squares 

F statistic p-value 

Between groups 0.0141 3 0.0047 23.7057 0 
Within groups 0.0056 28 1.9875e-004   
Total 0.0197 31    

 
Table 6. ANOVA results for PZT3. 

 
Source of Variability Sum of 

Squares 
Degrees of 
Freedom 

Mean 
Squares 

F statistic p-value 

Between groups 2.3550 3 0.7850 163.4773 0 
Within groups 0.1345 28 0.0048   
Total 2.4895 31    

 
It is worth to point out that the variability within groups is smaller than the variability between groups in all PZTs. 

Here, each group represents one structural condition. The biggest variability between groups was reached for PZT3 and, 
it was due to the application of the induced damage by loosening and tightening handily the bolt near to this field. One 
can also verify that the variability between groups in PZT1 is bigger than PZT2. It is credited by the fact that PZT1 is 
closer to the damaged region in the damage 1 (see fig. 2) than PZT2. Another reason is because all bolts were 
retightened after each measurement test and, it could be difficult to assembly in the same situation, or else, a residual 
damage in these bolts could have remained. Figure 7 shows the box-whisker plot for PZT1, PZT2 and PZT3. In figure 8 
are plotted the multiple comparisons using one-way ANOVA results to determine which estimates are significantly 
different using the Tukey’s criterion. 

So important as to detect the damage, is to avoid the false-positive (false alarming of fault). The measurements of 
test 1 were obtained after a time period without any structural modification induced. The analysis of figures 7 and 8 
permits to recognize these healthy conditions. However, the test 1 using the PZT1 was distant from the baseline (test 0). 
It could represent an alarm of damage, but if the damage had been included, it would be hoped that the index value in 
the PZT3 changed its value in the test 1 due to PZT3 to be close the field of PZT1 (see figure 2). The PZT2 also 
presented a little difference, but the index remained within of the control limits. The results permit conclude that this 
approach seems to be robust to false alarming in the PZT2 and PZT3 and in the PZT1 with more careful in the analysis 
of diagnosis in this sensor. 

The damage 1 (test 2) was induced near to PZT3 in the vertical beam. It is clear that the most variation occurred in 
this PZT index. It is also worth to observe that the indexes from PZT1 and PZT2 in this test overlap the limit of control. 
This result is difficult to observe by simple visual analysis of fig. 6, proving that ANOVA approach help us to obtain a 
clearer decision. Hence, this analysis procedure was able to detect and locate the damage. PZT3 gave a clear indication 
of the damage and PZT1 can also be useful to confirm the damaged region once that the variation in the PZT2 was 
smaller than PZT1. It was occurred because the PZT2 is more distant from damaged field (see fig. 2). 
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Figure 7. Box-and-whisker display of data set for PZT1, PZT2 and PZT3. 
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Figure 8. Multiple comparisons for each PZT using one-way ANOVA results and the Tukey’s honestly significant 
difference criterion. 

 
On the other hand, when the damage 2 was induced (test 3) the bigger variations were observed in PZT 1 and 2. 

However, the value of the index in PZT1 is smaller than PZT2. For clearness, fig. 9 shows the box-and-whisker plot for 
test 3 (damage 2) considering the index from PZTs 1 and 2. The median value is bigger in the PZT2 than PZT1. 
Moreover, the F- statistic is bigger in PZT1 than PZT2 (see ANOVA tables) and the distribution of values in PZT2 is 



asymmetric with more values down to median, while in the PZT1 is symmetric. These evidences are an indicative of 
damage in the corner bolt close to PZT2. 
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Figure 9. Box-and-whisker display of data set from test 3 (Damage 2) for PZT1 and PZT2. 
 
6. FINAL REMARKS 
 

The approach used in this paper was able to detect and locate structural damages in non-supervised learning mode 
without mathematical model. The proposed methodology also takes advantage of high frequency structural excitations 
and smart materials frameworks. Similar results were found in the paper of Silva et al. (2007b) by using a root-mean-
square deviation (RMSD) based on frequency-domain index. However, the results of this paper are considered more 
representatives, because the use of ARMAX time-series model fitted using a set of healthy data can provide parametric 
information useful for a further prognostic step. Moreover, the ARMAX models are basically a set of discrete-time 
filters easily programmed in a digital signal processor. Hence, this formulation is attractive for implementation in a real 
monitoring system without human supervisor. Additionally, the threshold value determined by ANOVA and multiple 
comparison procedures leads a more rigorous thresholds statistical criterion than the simple RMSD used in the classical 
damage metric chart obtained by electric impedance techniques. The next phase of this research is the investigation of 
non-linear damage-feature by using NARMAX models. 
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