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Abstract. Natural systems are essentially nonlinear being neither completely ordered nor completely random. These 
nonlinearities are responsible for a great variety of possibilities that includes chaos. On this basis, the effect of 
randomness on chaos and order of nonlinear dynamical systems is an important feature to be understood. This article 
considers randomness as fluctuations and uncertainties due to noise and investigates its influence in the nonlinear 
dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to 
parameters or to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the 
connection parameters, representing the idea that all Nature is, in some sense, weakly connected. Results from 
numerical simulations show situations where noise alters the system nonlinear dynamics.  
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1. INTRODUCTION 
 

The term complexity has been used to denote the main characteristics related to complex system behavior associated 
with complicated and intricate features. The detailed comprehension of complex system behavior is not well-
established, however, there are some characteristics often exhibited by this kind of behavior. The entire system may be 
split into parts that are connected by intricate manners. Besides, there exist multi-scale aspects, exhibiting complex 
patterns (Viana et al., 2005; Poon & Grebogi, 1995). These complexity characteristics are usually coined as emergence, 
self-organization, synergetics, collective behaviors, and other equivalent jargons. Chua (2005) argue that local activity 
is the origin of complexity, explaining that all complex properties are manifestations of this new principle. Moreover, 
this argue says that most complex phenomena emerge to a subset of locally-active region, called the edge of chaos 
(Pascale, 1999). 

Natural systems have nonlinear characteristics responsible for a great variety of possibilities. Chaos is one of these 
possibilities that has an intrinsically richness related to its structure. Because of that, there are benefits for natural 
systems of adopting chaotic regimes with their wide range of potential behaviors. Besides, chaos is related to long-term 
unpredictability and may be geometrically understood considering a sequence of contraction-expansion-folder 
transformation, known as Smale horseshoe (Savi, 2005, 2006). In the past, most of contributions related to chaotic 
dynamics were concentrated on the time evolution analysis of low-dimensional dynamical systems. Nevertheless, 
several natural systems must be investigated according to a high-dimensional approach. Recently, the spatiotemporal 
chaos has attracted so much attention due to its theoretical and practical applications (Viana et al., 2005; Vasconcelos et 
al., 2004; Lai & Grebogi, 1999; Shibata, 1998; Awrejcewicz, 1991; Umberger et al., 1989). 

Poon & Grebogi (1995) argue that natural systems are neither completely ordered nor completely random, and 
therefore, the complex behavior has both elements of order and randomness. On this basis, it is an important feature to 
understand if randomness is a fundamental principle governing natural systems or if it is a limitation in comprehending 
complex systems (Datta & Raut, 2006). Besides, it is important to evaluate the randomness influence on chaos and 
order of nonlinear dynamical systems. The literature presents many reports dealing with different aspects of noise in 
nonlinear dynamics. These articles evaluate noise-induced chaos, synchronization or control of dynamical systems 
(Gan, 2006; Guan et al., 2006; Yoshida et al., 2006, Lin & Chen, 2006). Moreover, there are many studies dealing with 
noise robustness of techniques employed for nonlinear analysis (Liu et al., 2005; Pereira-Pinto et al., 2004; Franca & 
Savi, 2003, 2001a,b). Therefore, it is important to argue the relationship between chaos and complexity and also 
between chaos and noise (Brown et al., 2001; Datta & Raut, 2006).  

The chaos study origin was characterized by the investigation of simple problems with very complicated dynamics. 
An emblematic example is the logistic map applied in biological, economic and social sciences (May, 1976). In this 
article, this “simplicity” is exploited in order to investigate the effect of randomness, represented by fluctuations and 
uncertainties due to noise. Coupled logistic maps, which study has been motivated by the description of spatial 
heterogeneity on population dynamics, are used with this aim (Viana et al., 2005; He & He, 2005; Vasconcelos et al., 
2004; Jiang et al., 1999; Kendall & Fox, 1998; Lloyd, 1995; Lai & Grebogi, 1994). The effect of noise in the nonlinear 
dynamical behavior of logistic maps are treated in some references with different objectives (Guan et al., 2006; Yoshida 
et al., 2006; Gottwalda & Melbourne, 2005; Fogedby & Jensen, 2005; Thiel et al., 2002). 

This article considers three kinds of situations related to randomness. Fluctuations are represented by adding random 
noise either to parameters or to state variables. Moreover, uncertainties are investigated by assuming tinny values for 
the connection parameters, representing that all Nature is, in some sense, weakly connected. Numerical simulations are 
carried out investigating these randomness effects in the system nonlinear dynamics.  



2. COUPLED LOGISTIC MAP 
 

Logistic map is a simple first-order difference equation originally proposed to describe population dynamics: 
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The nonlinear dynamics of this map is well-known being discussed in different references. In order to briefly 
characterize its dynamics, it is presented a bifurcation diagram in Figure 1, together with its enlargement in a specific 
region. This classical diagram shows a road to chaos characterized by period doubling cascades, being noticeable 
periodic windows inside chaotic regions, and also crisis phenomenon. 

 

    
Figure 1. Logistic map bifurcation diagram. 

 
Motivated by the description of spatial heterogeneity on population dynamics, many authors are considering 

different coupling forms of logistic maps (Lloyd, 1995; Jiang et al., 1999; He & He, 2005; Kendall & Fox, 1998; Lai & 
Grebogi, 1994). Here, two logistic maps are coupled by the connection parameter, ε, as follows: 
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Analyses are developed by considering different behaviors of each map (called X-map and Y-map) and the 

interactions between them. As examples of behaviors of each isolated map, the following parameters are employed 
during the developed analysis: α = 2.5 (period-1), α = 3.2 (period-2), α = 3.63 (period-6, periodic window), α = 3.64 
(near crisis), α = 3.8 (chaos).  

The forthcoming discussion is focused on coupled logistic map. At first, parameters αX = 3.8 (chaos), αY = 2.5 
(period-1) are considered and the influence of connection parameter ε is analyzed from bifurcation diagrams presented 
in Figure 2. The ε value increase tends to synchronize the map behaviors, transmitting chaos from the X-map to the Y-
map. Moreover, notice that there are periodic windows within chaos. The coupled map responses for some connection 
parameter values are shown in Figure 3, presenting the Xn+1-Yn+1 space. When ε = 0, there is chaos in the X-map and a 
period-1 response in the Y-map and the coupled response is represented by a horizontal line. When ε = 0.016, a value 
inside the periodic window, it is observed a period-3 coupled behavior. Chaotic behavior is observed when ε = 0.06. 

 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

    

Figure 2. Logistic map bifurcation diagram αX = 3.8 (chaos) and αY = 2.5 (period-1). 
 

    

 
Figure 3. Logistic map behavior for αX = 3.8 (chaos) and αY = 2.5 (period-1) and different connections (ε = 0, ε = 0.016, 

ε = 0.06). 
 
Now, parameters are changed considering αX = 3.8 (chaos) and αY = 3.2 (period-2). Bifurcation diagrams analyzing 

variations in the connection parameter, ε, is presented in Figure 4. Once again, synchronization is observed (similar to 
the previous example), transmitting chaos from the X-map to the Y-map; periodic windows still existing within chaos. 
The coupled map responses for some values of connection parameter are presented in Figure 5. When ε = 0, there is a 
chaos in the X-map and period-2 in the Y-map and the coupled response is represented by two horizontal lines. When ε 
= 0.012, it is observed a chaotic behavior with a disconnected attractor. By increasing connection parameter to ε = 0.06, 
there is a different chaotic attractor. 



    

Figure 4. Logistic map bifurcation diagram αX = 3.8 (chaos) and αY = 3.2 (period-2). 
 

    

Figure 5. Logistic map behavior for αX = 3.8 (chaos) and αY = 3.2 (period-2) and different connections (ε = 0.012, ε = 
0.06). 

 
At this point, a parameter near the X-map crisis is considered (αX = 3.64) together with αY = 2.5 (period-1). 

Bifurcation diagrams for this situation are presented in Figure 6, showing a similar structure of the previous ones. 
 

    

Figure 6. Logistic map bifurcation diagram αX = 3.64 (near crises) and αY = 2.5 (period-1). 
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3. FLUCTUATIONS AND UNCERTANTIES DUE TO NOISE 
 

Randomness influence on the coupled logistic map nonlinear dynamics is analyzed by adding random noise either to 
parameters or to state variables. On this basis, the following coupled map is considered: 
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Variables 

Xαρ , 
Yαρ , ρε, ρX and ρY are related to random numbers and their definition follow the rule: ρ = 1 + 

δR(−1,+1), where R(−1, +1) is a random number in the range (−1, +1) and δ is the amplitude of this variation. Random 
numbers are generated by proper algorithms (Press et al., 2002). Although all variables are defined by the same form, in 
the definition of ρε, however, the product (ρε ε) is never less than δ, which defines the smallest noise level.  

The influence of fluctuations in the connection parameter is now in focus. Therefore, it is assumed 
1==== YXYX

ρρρρ αα  and ρε  = ρε (δ). In order to establish a comparison with results obtained in the previous 

section, it is assumed αX = 3.8 (chaos) and αY = 2.5 (period-1). By considering δ = 1%, results are analyzed from 
bifurcation diagrams presented in Figure 7, which may be compared with Figure 2. It is noticeable that the uncoupled 
behavior does not exist anymore since it is considered that there is always a connection due to noise. This effect implies 
that randomness may cause unexpected coupling. Moreover, the noise destroys some periodic windows changing some 
expected behaviors. 

 

    

Figure 7. Logistic map bifurcation diagram αX = 3.8 (chaos), αY = 2.5 (period-1) and a noise ρε = ρε (δ), δ = 1%. 
 

The map response coupled by the noise (ε = 0, ρε  = ρε (δ)) is presented in Figure 8 for different noise levels: δ = 1% 
and δ = 5%. When δ = 0 (see Figure 3), there is chaos in the X-map and a period-1 response in the Y-map, which is 
represented by a horizontal line in the Xn+1-Yn+1 space. By increasing the noise level, δ, this horizontal line tends to 
become a chaotic attractor (Figure 8). The attractor transition from the horizontal line (when δ = 0 - Figure 3) to other 
situations where δ ≠0 (Figure 8) suggests a multi-scale characteristic. The δ increase tends to increase the attractor 
region. Therefore, the randomness generates attractors related to the noise level. By comparing Figure 3 with Figure 8 it 
is possible to infer that for δ values less than 1% (and greater than 0) the chaotic attractor may be viewed as a horizontal 
line. Nevertheless, there exists a proper observation scale where it is possible to identify the existence of an attractor. 
The noise level is also related to this observation scale.  

 



    

Figure 8. Logistic map behavior for αX = 3.8 (chaos), αY = 2.5 (period-1), ε = 0 and different noise levels (ρε  = ρε (δ): δ 
= 1%, δ = 5%). 

 
The uncertainty is now focused on considering that both maps are weakly connected (ε = 1×10−4). Philosophically 

speaking, this situation establishes that all Nature is, in some sense, weakly connected. These weak connections may 
become strong as a consequence of some events as the randomness. This situation is investigated by assuming 
parameter fluctuations represented by 

Xαρ  and 
Yαρ , respectively associated with the X-map and the Y-map. At first, it 

is considered a situation where αX = 3.8 (chaos) and αY = 2.5 (period-1). Results related to the Y-map fluctuations 
(

Yαρ ) are presented in Figure 9, showing situations with different noise levels (δ = 1% and δ = 5%). Notice that the 
noise level increase tends to increase the cloud of points related to randomness. Results related to the X-map 
fluctuations (

Xαρ , δ = 5%) are presented in Figure 10. For this case, there is a chaotic attractor that, in this scale (left 
side of Figure 10), cannot be distinguished from a horizontal line. The enlargement of this response, however, shows 
the attractor structure (right side of Figure 10). At this point, it should be highlighted that the Y-map noise (related to a 
period-1 response) has a greater influence in the system dynamics than the X-map noise (related to a chaotic response). 
Nevertheless, it is important to notice that for attractor characteristic observations on scales less than the noise level, the 
attractor appears to be a cloud of points (Ott et al., 1985). 

    

Figure 9. Logistic map behavior for αX = 3.8 (chaos), αY = 2.5 (period-1), ε = 1×10−4 and different noise levels (
Yαρ  = 

Yαρ (δ): δ = 1%, δ = 5%). 
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Figure 10. Logistic map behavior for αX  = 3.8 (chaos), αY  = 2.5 (period-1), ε = 1×10−4 and noise level 
Xαρ  = 

Xαρ (δ), 

δ = 5%. 
 

Chaos presents sensitive dependence on initial conditions and also parameters sensitivity under certain 
circumstances. The crisis is a typical situation where it occurs. Therefore, it is expected that, near the crisis, noise effect 
becomes more effective. In order to investigate this situation, let us consider αX = 3.64, αY = 2.5 and noise levels related 
to the X-map (noise )(δρρ αα XX

= , with the others equal to unit). Bifurcation diagram related to ε variation is shown 

in Figure 6 for a situation without noise. Now, it is considered the response for ε = 0 and different noise levels (Figure 
11). For a situation without noise, the X-map presents a chaotic disconnect attractor while the Y-map presents a period-1 
response. By considering noise (δ = 1%), the attractor changes its form, highlighting the crisis phenomenon.  
 

    

Figure 11. Logistic map behavior for αX = 3.64 (near crisis), αY = 2.5 (period-1), ε = 0 and different noise levels 
( )(δρρ αα XX

= : δ = 0, δ = 1%). 

 

Dynamical responses within periodic windows are other situations where parameter sensitivity is important. In order 
to investigate this behavior it is considered a situation where αX = 3.62 (near crisis) and αY = 3.63 (period-6, periodic 
window). Once again, it is established a comparison between situations with and without noise (Figure 12). When δ = 0 
(situation without noise), the X-map presents a chaotic disconnect attractor while the Y-map presents a period-6 
response. The coupled system, therefore, presents an attractor formed by six horizontal lines (Figure 12, left side). By 
considering noise (δ = 1%), different structures appears (Figure 12, right side).  
 



     

Figure 12. Logistic map behavior for αX = 3.64 (near crisis), αY = 3.63 (period-6, periodic window), ε = 0 and different 
noise levels ( )(δρρ αα XX

= : δ = 0, δ = 1%). 
 

The state variable noise fluctuation is now focused on. A situation where αX = 3.8 (chaos), αY = 2.5 (period-1) and ε 
= 0 is assumed. At this point, it is assumed noise fluctuations associated with the X-map ( )(δρρ XX = , δ = 1%) and 
also related to the Y-map ( )(δρρ YY = , δ = 1%). The left side of Figure 13 presents the response with the X-
fluctuations showing the same qualitative behavior of those without noise fluctuations (δ = 0 - see Figure 3). On the 
other hand, the right side of Figure 13 presents the response with the Y-fluctuations, showing that the point related to a 
period-1 response is replaced by a cloud of points which thickness is associated with the noise level. Once again, it 
should be highlighted that noise related to periodic response has a greater influence in the system behavior than the one 
associated with chaos.   

 

    

Figure 13. Logistic map behavior for αX  = 3.8 (chaos), αY = 2.5 (period-1), ε = 0 and ( )(δρρ YY = , δ = 1%). 
 

4. CONCLUSIONS 
 

This article discusses some aspects related to the effect of randomness on chaos and order of coupled logistic maps. 
Fluctuations and uncertainties are incorporated considering parameters and state variables random variations. Besides, 
since it is possible to consider that all Nature is, in some sense, weakly connected, it is investigated situations where 
connection parameters assume tinny values. The natural system intricate connections may be promoted by fluctuations 
and uncertainties, inducing, for example, synchronization among them. Multi-scale characteristic is also another 
important aspect that may be related to noise that can induce different attractors depending on noise level and also on 
observation scale. Sensitive dependence either on initial conditions or on parameters may be highly influenced by noise. 
Concerning the noise influence on nonlinear dynamical responses, results show that fluctuations related to periodic 
response has a greater influence than fluctuations related to chaotic behavior. These results may be a simple and useful 
manner for the comprehension of many aspects related to complex systems where chaos, order and randomness are 
combined. 
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