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Abstract. Chaos control is based on the richness of responses of chaotic behavior. A chaotic attractor has a dense set 
of unstable periodic orbits (UPOs) and the system often visits the neighborhood of each one of them. Moreover, 
chaotic response has sensitive dependence to initial condition, which implies that the system’s evolution may be altered 
by small perturbations. Therefore, chaos control may be understood as the use of tiny perturbations for the 
stabilization of an UPO embedded in a chaotic attractor, which makes this kind of behavior to be desirable in a variety 
of applications, since one of these UPO can provide better performance than others in a particular situation. The OGY 
method is a discrete technique that considers small perturbations promoted in the neighborhood of the desired orbit 
when the trajectory crosses a specific surface, such as some Poincaré section. This contribution proposes a multi-
parameter semi-continuous method in order to control chaotic behavior. As an application of the general formulation, 
it is investigated a two-parameter atuation of a nonlinear pendulum control employing uncoupled actuations. Analyses 
are carried out considering signals that are generated by numerical integration of the mathematical model.Results 
show that the procedure can be an efective  good alternative for chaos control since it provides a more effective UPO 
stabilization.  
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1. INTRODUCTION 
 

Chaos control may be understood as the use of tiny perturbations for the stabilization of unstable periodic orbits 
(UPOs) embedded in a chaotic attractor. Chaos control methods may be classified as discrete or continuous techniques. 
The first chaos control method was proposed by Ott et al. (1990), nowadays known as the OGY method as a tribute of 
their authors (Ott-Grebogi-Yorke). This is a discrete technique that considers small perturbations promoted in the 
neighborhood of the desired orbit when the trajectory crosses a specific surface, such as some Poincaré section (Grebogi 
& Lai, 1997; Shinbrot et al., 1993). On the other hand, continuous methods are exemplified by the so called delayed 
feedback control, proposed by Pyragas (1992), which states that chaotic systems can be stabilized by a feedback 
perturbation proportional to the difference between the present and a delayed state of the system. There are many 
improvements of the OGY method that aim to overcome some of its original limitations, as for example: control of high 
periodic and high unstable UPO (Otani & Jones, 1997, Ritz et al., 1997 and Hübinger et al., 1994) and control using 
time delay coordinates (Dressler & Nitsche, 1992; So & Ott, 1995 and Korte et al., 1995).  

This contribution considers a multi-parameter chaos control method based on the semi-continuous method built 
upon the OGY method, named SCC-OGY (Pereira-Pinto et al., 2004, 2005; Savi et al., 2006). The idea is to define 
different control parameters in order to perform the UPO stabilization. A general formulation is presented and after that, 
an uncoupled two-parameter control of a nonlinear pendulum is carried out. Results show that the procedure can be a 
good alternative for chaos control since it provides a more effective UPO stabilization. 

 
2. MULTI-PARAMETER CHAOS CONTROL METHOD 
 

A chaos control method may be understood as a two stage technique. The first step is known as learning stage where 
the unstable periodic orbits are identified and some system characteristics are evaluated. After that, there is the control 
stage where the desirable UPOs are stabilized.  

The multi-parameter chaos control (MPCC) method considers different control parameters, however, in a specific 
section only one of those actuates. Under this assumption, the map )1,( +nnF  that establishes the relation between the 
system in control section n and n+1, depends on all control parameters, ip . Although each parameter actuates in 
different sections, it is assumed its influence based on their positions in section nΣ .  

 
),()1,(1 nnnnn PF ξξ ++ =  (1) 

 



where nP  is a vector with all control parameters. Using a first order Taylor expansion, one obtains the linear behavior 
of the map )1,( +nnF  in the neighborhood of the control point n

Cξ  and around the control parameter reference.  
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This equation may be rewritten as follows 
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nn ξξδξ −= . nW  is the sensitivity matrix and each column is related to a control parameter. In order to evaluate the 
influence of all parameters actuation in the system response it is built a basis where each term is formed by the 
influence of a single isolated parameter when the others are fixed at a reference value. Under this assumption, it is 
assumed that the resultant actuation is represented by a linear combination of these basis vectors. Therefore, 

)( 0pppP nnnnn −== βδβδ , where nβ  weights each parameter influence in the system response, pn is a vector with all 

parameter positions, p0 is a vector with all the reference parameter positions and npδ  is a vector that contains the real 
parameter actuations.  

By assuming that each parameter actuates in only one control section it is possible to define active parameter, 
represented by subscript a, n

a
n
a

n
a pP δβδ =  - actuates in section section nΣ , and passive parameters, represented by 

subscript p, n
p

n
p

n
p pP δβδ =  - that does not actuate in section nΣ . Here, it is assumed n

aβ  and n
pβ  as scalars, meaning that 

there is a contribution to all passive parameters and a different one to the active parameters. Therefore,  
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At this point, it is necessary to align the vector 1+nδξ  with the stable direction 1+n

sν : 
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where ℜ∈α , needs to be satisfied as follows: 
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Therefore, the unknown variables are α  and the non-vanishing term of the vector n

aPδ , resulting in the following 
system: 
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The solution of this system furnishes the necessary values for the system stabilization: α  and n

ipδ , where n
ipδ  is 

related to the non-vanishing element of the vector n
aPδ .  

A particular case of this control procedure has uncoupled control parameters meaning that each parameter returns to 
the reference value when it becomes passive. Moreover, since there is only one active parameter in each control section, 
the system response to parameter actuation is the same as when it actuates alone. Under this assumption: 

 
0=n

pβ  and 1=n
aβ  (8) 
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Therefore, the map )1,( +nnF  that establishes the relation between the system in control section n and n+1 is just a 
function of the active parameter ),()1,(1 n

a
nnnn PF ξξ ++ = :  
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where the sensitivity matrix nW  is the same of the previous case. Moreover, since 1=n

aβ , it follows that n
a

n
a pP δδ =  , 

thus the value of n
aPδ  obtained from (10) correspond to the real perturbation necessary to stabilize the system. In order 

to align the vector 1+nδξ  with the stable direction, the following system is obtained: 
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3. NONLINEAR PENDULUM  

 
As a mechanical application of the general chaos control procedure here presented, a nonlinear pendulum is 

considered. The motivation of the proposed pendulum is an experimental set up discussed in De Paula et al. (2006). 
Here, a mathematical model is developed to describe the dynamical behavior of the pendulum while the corresponding 
parameters are obtained from the experimental apparatus. Numerical simulations of such model are employed in order 
to obtain time series related to the pendulum response. Finally, some unstable periodic orbits are identified with the 
close return method and their control simulated employing the MPCC method.  

The considered nonlinear pendulum is shown in Figure 1. The right side presents the experimental apparatus while 
the left side shows a schematic picture. Basically, the pendulum consists of an aluminum disc (1) with a lumped mass 
(2) that is connected to a rotary motion sensor (4). A magnetic device (3) provides an adjustable dissipation of energy. 
A string-spring device (6) provides torsional stiffness to the pendulum and an electric motor (7) excites the pendulum 
via the string-spring device. Two actuators are considered in order to provide the necessary perturbations to stabilize 
this system. Actuator (5) which properly changes the end string length and actuator (8) which changes the string 
position near the motor. Both actuators can be experimentally implemented by, for example, step motors. 

 

  

 

 
Figure 1. Nonlinear pendulum. (a) Physical Model: the pendulum consists of a metallic disc (1) with a lumped mass (2) 

that is connected to a rotary motion sensor (4). A magnetic device (3) provides an adjustable dissipation of 
energy. A string-spring device (6) provides torsional stiffness to the pendulum which is excited by an electric 

motor (7). Two actuators (5) and (8) are considered.(b) Parameters and forces on the metallic disc. (c) 
Parameters from driving device. (d) Experimental apparatus. 

 
 

In order to describe the pendulum dynamics, a mathematical model is proposed. Assuming that ϖ is the forcing 
frequency, a defines the position of the guide of the string with respect to the motor, b is the length of the excitation arm 

(d) 



of the motor, D is the diameter of the metallic disc and d is the diameter of the driving pulley, the equation of motion is 
given by (De Paula et al., 2006): 
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where )()sin(2)cos(2)( 2
2

2
22 batlbtablbatf −−Δ−−Δ++=Δ ϖϖ . 

 
The Δl1 parameter is the length variation in the string provided by the linear actuator (5), while Δl2 is the variation of 

the string position provided by actuator (8). This model represents the pendulum dynamics and its numerical 
simulations are in close agreement with experimental data (De Paula et al., 2006). In order to show this agreement, it is 
presented numerical and experimental chaotic strange attractors in Figure 2 assuming the parameters: a = 1.6×10−1 m; b 
= 6.0×10−2 m; d = 4.8×10−2 m; D = 9.5×10−2 m; m = 1.47×10−2 kg; I = 1.738×10−4 kg m2; k = 2.47 N/m; 

125 smkg10368.2 −−×=ζ ; mN10272.1 4−×=μ ; rad/s61.5=ω .  
 
 

 
Figure 2. Chaotic strange attractors for rad/s61.5=ω . Experimental, left side, and numerical, right side. 

 
4. NUMERICAL SIMULATIONS 
 

The first stage of the control strategy is the identification of UPOs embedded in the chaotic attractor. The close 
return method (Auerbach et al., 1987) is employed with this aim. Figure 3 shows some UPOs identified during this 
stage. After the UPOs identification, the local dynamics expressed by the Jacobian matrix and the sensitivity matrix of 
the transition maps in a neighborhood of the fixed points are determined using the least−square fit method (Pereira-
Pinto, 2004, 2005; Auerbach et al., 1987; Otani & Jones, 1997). After that, the SVD technique is employed for 
determining the stable and unstable directions near the next fixed point. The sensitivity matrices are evaluated allowing 
the trajectories to come close to a fixed point and then one perturbs the parameters by five times the maximum 
permissible value. Once in multiparameter control the maximum parameters actuation is limited to smaller values than 
when only one parameter actuates, it is not considered the maximum values in the perturbations to evaluate the sensitive 
matrix as usual. In this case, it is assumed: mm51 =máxlΔ  and mm102 =máxlΔ .  
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Figure 3. Identified UPOs evaluated by the close return method. 

 
In order to verify the capacity of the proposed chaos control method, it is assumed the uncoupled procedure to 

follow a control rule that stabilize UPOs in the following sequence: a period-5 orbit during the first 500 periods, a 
period-4 from period 500 to 1000, a period-7 from 1000 to 1500 and, finally a period-1, from period 1500 to 2000. 
Figures 4 and 5 present the system evolution in two different control sections. It is presented the controlled 
displacement and also the control parameters. It should be highlighted that this procedure stabilized the desired orbits 
with small perturbations in both parameters.  

 

 
Figure 4. System controlled using uncoupled approach at the control station #1: (a) Displacement; (b) Perturbation. 

 
Figure 5. System controlled using uncoupled approach at the control station #2: (a) Displacement; (b) Perturbation. 

 
The stabilized UPOs are shown in Figures 6-9 together with the control signal. Notice that phase space, 

displacement and control signal time history are presented. 
 



 
(a) (b) (c) 

Figure 6. UPO period-5 stabilized using uncoupled approach: (a) Phase space; (b) )(tφ ; (c) )(1 tlΔ  and )(2 tlΔ . 
 

 
(a) (b) (c) 

Figure 7. UPO period-4 stabilized using uncoupled approach: (a) Phase space; (b) )(tφ ; (c) )(1 tlΔ  and )(2 tlΔ . 
 

 
(a) (b) (c) 

Figure 8. UPO period-7 stabilized using uncoupled approach: (a) Phase space; (b) )(tφ ; (c) )(1 tlΔ  and )(2 tlΔ . 
 

 
(a) (b) (c) 

Figure 9. UPO period-1 stabilized using uncoupled approach: (a) Phase space; (b) )(tφ ; (c) )(1 tlΔ  and )(2 tlΔ . 
 

In order to establish a comparison between the multi-parameter and the single-parameter method, the same control 
rule is applied to the single-parameter technique considering the actuation performed by the parameters 1lΔ  and 2lΔ . 
At first, 1lΔ  actuation is of concern. Figure 10 show the stabilized UPOs and also the control parameter at section SC1. 
Figure 11, on the other hand, presents the same pictures assuming the actuation of parameter 2lΔ . Notice that both 
procedures are not capable to follow the control rule and only three UPOs are stabilized. It should be also noticed that 
the maximum control parameter values: mm151 =Δ máxl  for the first case and mm252 =Δ máxl for the second, are 
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greater than the ones presented by the multi-parameter control. By observing the MPCC results it is noticeable that the 
maximum values are mm51 =Δ máxl  and mm102 =Δ máxl . 

 
Figure 10. System controlled using parameter 1lΔ  at the station #1: (a) Displacement; (b) Perturbation. 

 
 
 
 

 
Figure 11. System controlled using parameter 2lΔ  at the station #1: (a) Displacement; (b) Perturbation. 

 
5. CONCLUSIONS 
 

This contribution presents a multi-parameter semi-continuous chaos control method built upon the OGY technique. 
Two different situations may be adopted for the general formulation: coupled and uncoupled actuation. As an 
application of the general formulation, the uncoupled actuation is employed in the nonlinear pendulum chaos control. 
Results show that the multi-parameter procedure tends to be more effective in order to stabilized unstable periodic 
orbits embedded in the chaotic attractor. Moreover, it should be highlighted that the multi-parameter procedure is more 
effective using smaller values of the accessible control parameter than the ones provided by the single-parameter 
procedure. 
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