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Abstract. The design and operation of energy systems nowadays must consider efficient utilization of energy resources, 
reduced environmental harms, and sustainable development. Many techniques for energy systems analysis and 
optimization have been developed worldwide. To evaluate different methodologies, the benchmark CGAM problem was 
proposed, which consisted in the optimization of a cogeneration system with given physical, thermodynamic, and 
economic models. The original CGAM problem was formulated as a single objective optimization problem, where the 
objective function was the sum of the maintenance and operation, purchased-equipment, and fuel consumption costs. 
However, in real-life applications, costs must be analyzed individually; for example, one might increase equipment 
costs, but save in fuel consumption for the entire system life. In this paper, a multi-objective hybrid optimization of the 
CGAM system is performed. A hybrid optimization algorithm combines and takes advantage of deterministic and 
heuristic methods. Usually, it employs a heuristic method to locate a region where the global extreme point lies, and 
then switches to a deterministic method to get to the exact point faster. The objective functions are the fuel 
consumption cost rate and the total capital investment. Thus, a Pareto front is obtained for all non-dominated 
solutions, where the final decision can be made considering appropriate scenarios. 
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1. INTRODUCTION 
 

The design and operation of energy systems nowadays must consider efficient utilization of natural energy 
resources, reduced harms to the environment, and sustainable development (Rosen and Dincer, 2001). The 
multidisciplinary field of exergoeconomics (Bejan et al., 1996) can address environmental issues, reveal the cost 
formation process of system products, and aid system design optimization. A large number of techniques for energy 
systems analysis and optimization have been developed worldwide in the past two decades (Bejan et al., 1996; 
Frangopoulos, 2003; Lazzaretto and Tsatsaronis, 2006; Valero, 2006). In Brazil, research in exergoeconomics has 
focused on the evaluation and interpretation of different cost partition methodologies (Cerqueira and Nebra, 1999; 
Júnior and Arriola, 2003), and on exergoeconomic optimization and improvement techniques (Vieira et al., 2004; Vieira 
et al., 2006). To evaluate and compare different exergoeconomic methodologies, C. Frangopoulos, G. Tsatsaronis, A. 
Valero, and M. von Spakovsky have proposed the optimization of the CGAM five-component cogeneration system as a 
benchmark problem (Tsatsaronis, 1994), which gained wide acceptance thereafter. 

While exergoeconomics provides insights to system improvement (Bejan et al., 1996), the actual optimization 
requires the application of a mathematical method. The optimization problem for an energy system can be formulated 
with the thermodynamic property and balance equations, and the component model equations as constraints (Jaluria, 
1998). In the case of a complex, many-component system, optimization is a large-scale problem. Recently (Vieira et al., 
2004; Vieira et al., 2006), optimization and improvement algorithms have been integrated with a professional process 
simulator, such that the thermodynamic constraints are dealt with competently by the program. The selection of the 
optimization method is still important, such that the whole optimization or improvement task is accomplished 
efficiently. As a matter of fact, to optimize even the relatively simple CGAM cogeneration system, one has to deal with 
O(102) variables; note that the number of variables rapidly increases as the system becomes more complex, as in real 
energy production systems. 

The motivation to pursue more efficient optimization strategies applicable to energy systems is thus clear. In this 
paper, a multi-objective optimization approach is employed to optimize thermoeconomically the CGAM reference 
system. For the single-objective optimization, two different hybrid optimization schemes were previously tested 



(Padilha et al., 2007), based on a genetic algorithm and the quasi-Newton method BFGS (Broyden-Fletcher-Goldfarb-
Shanno). Genetic algorithms are easy to code and robust, i.e., will less likely stop at local optima, but they tend to be 
computationally expensive. Gradient, Newton and quasi-Newton methods are efficient, but at the cost of calculating 
derivatives and Hessians, which is not always possible in energy systems problems. Also, gradient-based methods are 
strongly dependent on the initial guess, when the problem has many local optima. Typically, hybrid algorithms attempt 
to combine the efficiency of gradient-based methods with the robustness of evolutionary algorithms (Colaço et al., 
2006; Colaço et al., 2005). Since in real-life applications costs must be analyzed individually, a multi-objective hybrid 
optimization of the CGAM system is here performed. The objective functions are the fuel consumption cost rate and the 
total capital investment. Thus, a new result for the CGAM system is obtained: a Pareto front for all non-dominated 
solutions, from which the final decision can be made considering appropriate scenarios. 

 
2. THE CGAM PROBLEM 

 
The benchmark CGAM problem (Tsatsaronis, 1994) consists in the optimization of a cogeneration system, for 

which the thermodynamic, physical, and economic models are given explicitly. The equations of the first two models, 
together with the system physical limits, represent the equality and inequality constraints of the optimization problem. 
The CGAM problem, though small-scale, is typical of energy systems optimization, in that it is nonlinear, and has an 
objective function which does not behave smoothly over the entire design domain. 

The CGAM system, shown in Fig. 1, is a cogeneration system that produces fixed amounts of electrical power and 
saturated steam. The electricity production is 30 MW, and the saturated steam mass flow rate at 20 bar is 14 kg/s. The 
CGAM system consists of the following five components: air compressor, air preheater, combustor, gas turbine, and 
heat recovery steam generator (HRSG). The combustor fuel is natural gas with a lower heating value of 50000 kJ/kg. 
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Figure 1. The benchmark CGAM cogeneration system. 
 
The selected decision variables for the optimization problem are the air compressor pressure ratio, Rc, the 

compressor and gas turbine isentropic efficiencies, respectively ACη and GTη , the temperature of the air at the inlet to 
the combustion chamber, T3, and the temperature of the combustion gases at the inlet to the gas turbine, T4. The 
restrictions on (i.e., the ranges which establish the limiting values for) the decision variables are (Padilha, 2006): 7 � Rc 
� 27; 0.7 � ACη  � 0.9; 0.7 � GTη  � 0.9; 700 K � T3 � 1100 K; 1100 K � T4 � 1500 K. 

 
3. PHYSICAL, THERMODYNAMIC AND ECONOMIC MODELS 
 

The equations of the physical and thermodynamic models are standard and well-known, and are given in detail in 
(Tsatsaronis, 1994); therefore, they will not be repeated here. 

The physical model equations comprise the mass and energy balances applied to the control volumes (i.e., 
components) of the CGAM system. The compression and expansion processes have prescribed isentropic efficiencies. 
Pressure losses are prescribed as percent fractions of inlet pressures in the combustion chamber, air preheater, and heat 
recovery steam generator. A positive temperature difference is imposed at the HRSG pinch point. 
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The thermodynamic model specifies the reference environment: T0 = 25 oC, P0 = 1.013 bar, relative humidity is 
60%. The mole fractions of the gases which compose the atmospheric air are specified. The fuel is pure methane gas, 
and the combustion is complete in the combustion chamber. The air and the combustion gases behave as ideal gases 
with constant specific heats. The thermophysical properties of all fluids are given. 

To evaluate costs associated with an energy system, one should consider the capital investment cost, the operation 
and maintenance costs, and the fuel cost. For the CGAM problem, because it serves as a reference for comparison of 
different optimization methodologies, a simplified economic model is assumed, based on the capital recovery factor, 
CRF (Bejan et al., 1994). In this model, the total capital investment, TCI ($), of a system is given by the sum of all the 
purchased-equipment costs, PEC ($), of the components of the system multiplied by a factor β, as given by 

 
  k k k

k k k

TCI TCI PEC PEC PECβ β β= = = =� � �           (1) 

 
where 1,...,k NK=  denotes the kth component, and NK is the total number of system components; here, NK = 5. The 
purchased-equipment costs of the air compressor (AC), combustion chamber (CC), gas turbine (GT), air preheater 
(APH), and heat recovery steam generator (HRSG) of the CGAM system are respectively given by (Tsatsaronis, 1994): 
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where PH and EV stand for water preheater and evaporator, respectively. 

The capital recovery factor, CRF, is given by 
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The fuel cost rate, fC� ($/h), is given by 
 

f f fC c m LHV=� �                (9) 
 

where the fuel mass flow rate in (9) must be given in kg/h. 
 

4. MULTI-OBJECTIVE OPTIMIZATION OF THE CGAM SYSTEM 
 

Using single-objective optimization methods, it is possible to deal with problems with only one objective function. 
However, real life problems usually demand more than one objective function. As an example, one might want to 



maximize the power of a gas turbine, while at the same time minimizing the fuel consumption in the combustion 
chamber. 

It is thus necessary to analyze simultaneously various objective functions, according to their relative priorities. In 
order to deal with such situations, there are several approaches. One technique is to optimize a multi-objective problem 
by means of scalar methods. These methods are based on a combination of the individual objective functions into a 
single function. In other words, the original objective functions 

1 2 kf f … f, , ,  are combined into a generic function f  as 

1 2( )kf G f f … f= , , , , where G  is a linear or non-linear combination of the original functions. The resultant function f  

can be minimized using the traditional single-objective optimization techniques. Thus, the final result is a single value, 
corresponding to the optimum values of the variables of the generic function f . The technique of combining different 
objective functions allows one to define individual weights to each one of the original functions, according to their 
relative importance. 

Although easy to implement, the technique described above has some disadvantages. The combination of all 
individual objective functions into a single function does not allow the designer to evaluate globally the relative 
importance of the functions. In order to offer to the designer a wider knowledge of the problem at hand, the new 
paradigm for multi-objective optimization no longer combines all functions into a single one. A better solution is to deal 
with the original functions, leading to a set of all possible solutions, where the optimum values are located. Such set of 
solutions is called a ‘Pareto front’ or ‘Pareto set’ (Deb, 2001), and will be briefly discussed next. 

To better understand the role of the Pareto front, it is necessary to define the concepts of dominated and non-
dominated solutions. A solution S1 is defined as dominated, when there is another solution S2 such that, for all objective 
functions, the solution S1 is worse than the solution S2. On the other hand, a solution S1 is defined as non-dominated, 
when there is no such solution S2 for which all its objective function values are better than S1. An alternative definition 
for a non-dominated solution is the following: a non-dominated solution is one, for which an improvement in one of the 
objective functions cannot be performed without deterioration in one or more of the other objective function values. 

The set of all non-dominated solutions is called Pareto front. The so-called best solution, taken from the Pareto 
front, is obtained through additional decision criteria (economic, technical, political, or other, based on some specific 
scenario for the application). The choice of the appropriate decision criteria is left to the designer. 
 
4.1. Mathematical formulation 
 

The general multi-objective optimization problem is proposed as a vector of objective functions ( )F x
� � , defined as 

 

1 2( ) [ ( ) ( ) ( )]kF x f x f x … f x= , , ,
� � � � �

      (10) 
 

where ( )  1 2 3if x i … k, = , , , ,� , are the objective functions, and 
1 2 3{ }nx x x x … x= , , , ,� is an n-dimensional vector composed of 

the optimization parameters. The vector F
�

 must have its individual components minimized or maximized, according to 
the problem being analyzed. 

In the same way as in the single-objective optimization problem, the set of variables x
�  might be subjected to 

constraints, which can be written as inequalities in the form ( ) 0  1 2 3jg x j … m≤ , = , , , ,� . The constraint expressions can also 

be written in vector form, 
1 2 3( ) [ ( ) ( ) ( ) ( )]mG x g x g x g x … g x= , , , ,

� � � � � � , such that the inequality constraint for the problem can be 

written as 
 

( ) 0G x ≤
� ��

      (11) 
 

The set of constraints in Eq. (11) define the domain of solutions, { ( ) 0}x G xΓ = | ≤
�� � . 

Since each solution vector x ∈ Γ�  gives only one vector of functions ( )F x
� � , there is a set Φ  of feasible functions 

( )F x
� �  defined as { ( ) }F x xΦ = | ∈Γ

� � � . Thus, F : Γ Φ
�
�  or, in words, the domain Γ  is mapped by F

�
 through the image 

kΦ ⊂ ℜ . The boundary of Φ  is represented by ∂Φ  , and it can contain the extreme values of the image. Thus, the 
Pareto front will be contained in ∂Φ . 

Let us now define rigorously the concept of dominancy. In a minimization problem, given two solution vectors x
�  

and y ∈ Γ�
 , the solution vector x

�  is dominant with respect to the solution vector y
�  , or x y

� �
�  , if 

 
{1 2 3 } ( ) ( ),   and  {1 2 3 } ( ) ( )i i j ji … k f x f y j … k f x f y∀ ∈ , , , , : ≤ ∃ ∈ , , , , : <� � � �

     (12) 

 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

Thus, the solution vector x
�  is dominant with respect to the solution vector y

� , if x
�  gives better results for all 

individual objective functions. Conversely, if x
�  is dominant with respect to y

� , the solution vector y
�  is dominated. 

Furthermore, if the solution x
�  is not dominated by any other solution, it is defined as a non-dominated solution. From 

the concept of dominancy, it is possible to define rigorously the Pareto set. 
The feasible solution vector x ∗�  may represent a Pareto set, only if there is no other feasible solution vector x

�  such 
that, for {1 2 3 }i … k∈ , , , , , 

 

( ) ( )i if x f x∗≤� �       (13) 
 

and, for at least one  {1 2 3 }j … k∈ , , , , , 
 

( ) ( )j jf x f x∗<� �       (14) 

 
The Pareto front is a subset of ∂Φ , which contains all non-dominated solutions. 

 
4.2. Minimization technique 
 

There are several types of techniques for solving a multi-objective optimization problem, such as the Min-Max 
technique (Hwang et al., 1980), the weighted sum technique and the Goal Programming method (Steuer, 1986), the 
approach based on a non-linear combination of the functions (Andersson et al., 1998), fuzzy logic (Chiampi et al., 
1998), the method of the utility function and the lexicographic method (Haimes et al., 1975), the step method 
(Benayoun et al., 1971), the particle swarm method (Parsopoulos and Vrahatis, 2002), and the genetic algorithm itself. 

In this work, similarly to the treatment of the single-objective optimization problem presented previously (Padilha 
et al., 2007), a hybrid method is employed. For this hybrid method, an initial population is generated, where the 
variables are defined as 

 

1 2( )NX …x x x= , , ,
�

� � �       (15) 
 
The values of each one of the objective functions are stored, corresponding to each member of the population. 

Then, the non-dominated individuals are found, considering that the individual ix
�  is dominated if there is any jx

�  such 

that 
 

( ) ( )j ik kf fx x<� �       (16) 
 

for every k . The search for local minima is effected by comparing the value of the objective function of each 
individual with the value of its neighborhoods. The local minima are those that have lower values of the objective 
function than the neighborhoods. Computationally, the search can be done by calculating the distance between the 
individual ix

�  and all the other individuals jx
� . Then, the individual 0jx

�  which is closest to ix
� , and is dominated by it, 

is sought. The distance between the individuals 0jx
�  and ix

�  will be called maximum radius, 
maxr , and is defined as 

 
min{ ( )}   0max i i jr dist x x i j N, = , , ≤ , ≤       (17) 

 
Figure 2 illustrates the determination of the maximum radius. 

 
 



 
Figure 2. Determination of the maximum radius, according to Eq. (17). 

 
After having determined the maximum radius for each individual, the local minima can be obtained. Two 

approaches are considered. In the first approach, it is verified how many points are contained within a distance 
max ir ,

 of 

the individual 
ix . If the number of points is greater than a prescribed constant, the 

ix  individual is considered as a local 

minimum, and kept for the next step. In the second approach, the maximum radius is compared with the mean distance 
among the individuals. If the radius 

max ir ,
 is sufficiently greater than the mean distance, the 

ix  individual is considered 

as a local minimum, and kept for the next step. The result of the local-minima search process is shown in Fig. 3, for the 
points appearing in Fig. 2. 

 

 
Figure 3. Local minima obtained with the search process applied to the points in Figure 2. 

 
After selecting some local minima, according to the search process just described, the algorithm proceeds to 

optimize the regions close to each local minimum. 
For each point ix

�  obtained, a cluster is generated around the individual. This cluster consists of new individuals 
randomly chosen, according to an exponential distribution around ix

� , 
 

log( )i j i jmin i jr yx x v, ,= + ⋅ ⋅� � �       (18) 

 
where jv

�  is a random vector with unitary modulus, 
min kr ,

 is the distance to the closest individual, and 
jy  is a random 

vector with uniform distribution. The clustering scheme is illustrated in Fig. 4. 
 

 
Figure 4. Clustering around the local minima. 
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The new non-dominated individuals are again obtained by using Eq. (16). In order to produce a uniformly 
distributed Pareto front, and not to increase excessively the computational cost, the closest points are discarded. For 
each non-dominated individual kx

� , a new function is defined as 
 

( ) ( )wF x w f x= ⋅�

�� � �
      (19) 

 
The vector w

�
 is chosen in such a way, that the kx

�  individual becomes the one, among the non-dominated 
individuals, which minimizes the function. After this, the steepest descent method is applied to the function ( )wF x�

� , 

having the individual kx
�  as the initial guess. 

 
4.3. Objective function for the CGAM problem 
 

The original CGAM problem formulation defines the total cost rate as the sum, on a rate basis, of the capital 
investment cost, the operation and maintenance costs, and the fuel cost; in fact, the total cost rate is the objective 
function, OF ($/h), to be minimized when solving the CGAM problem, and is written as (Bejan et al., 1996; 
Tsatsaronis, 1994; Padilha, 2006) 
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f f f f
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1 k
k

k
k

CRF TCI
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� �
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� �
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The values prescribed for the parameters of the economic model are (Tsatsaronis, 1994; Padilha, 2006): 1β = , i = 

12.7%, l = 10 years, 8000τ = hours, and 0.06γ = . In Table 1, the optimal values for the decision variables and 
objective function of the CGAM problem are shown (Tsatsaronis, 1994). 

 
Table 1. Optimal values for the decision variables and objective function of the CGAM problem. 

 
Variable Optimal value 

Rc 8.5234 

ACη  0.8468 

( )3  KT  914.28 

GTη  0.8786 

( )4  KT  1492.63 

( ) $/hOF  1303.23 
 

The original CGAM problem is formulated in terms of one objective function only (Tsatsaronis, 1994).  This 
objective function is defined as the sum of all system cost rates, Eq. (20). From a different perspective, a new multi-
objective formulation can be proposed to the optimization of the CGAM system, which consists in the independent 
evaluation of the main costs of the system. 

The objective function of the original CGAM problem, OF, is the total cost rate of the system, which is composed 
of the cost rate of fuel, f

�C  , the total purchased-equipment cost rate, PEC
�Z  , and the cost rate associated with the 

operation and maintenance of the plant, O&M
�Z  , such that 

 

PEC O&M f fOF Z Z C Z C= + + = +� �� � �           (21) 
 
Comparing Eq. (20) with Eq. (21), and using Eq. (1) with β = 1, we can verify that 
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f f fC c m LHV=� �             (24) 
 
Here, in order to perform a multi-objective optimization of the CGAM system, it is proposed to use separate costs 

as objective functions, instead of using the total cost rate of the system. Therefore, the fuel consumption cost rate, f
�C , 

and the total capital investment, TCI, are used as the objective functions to be minimized. This choice for the objective 
functions is justified, since the total purchased-equipment cost rate, PEC

�Z , and the cost rate associated with the operation 

and maintenance of the plant, O&M
�Z , can be obtained easily using Eqs. (22) and (23), respectively, with τ = 8000 hours, 

γ  = 0.06, and CRF = 18.2%, as discussed previously. 
The main advantage of this new proposal consists in the non-dependency of the result with respect to the 

amortization rate (CRF). The designer is then able to evaluate the influence of the acquisition cost on the fuel 
consumption cost. In this way, the designer can make a better decision, according to the appropriate economical 
scenario at the time. 
 
4.4. Multi-objective optimization results 
 

Figure 5 shows the Pareto front obtained as a solution of the multi-objective optimization of the CGAM system, 
using the objective functions defined in the previous section. The standard CGAM system has its optimum located at 
the coordinates (5.4516 x 106 $, 0.325489 $/s), where the first coordinate is the total capital investment, and the second 
coordinate is the fuel consumption cost rate, given in $/s. As one can deduce from the analysis of the Pareto front in Fig. 
5, the single-objective result is a particular solution of the multi-objective solution. In fact, the solution of the single-
objective optimization is 1303.23 $/h, which can be recovered promptly by replacing the appropriate values of f

�C , TCI, 
γ, CRF, and τ into Eqs. (21)-(24). 
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Figure 5. Pareto front for the CGAM system, corresponding to the objective functions f

�C  and TCI. 
 

5. CONCLUSIONS 
 

Efficient design of energy systems is an integral part of the solution to meet current demands on minimal energy 
use and minimal environmental impacts. In the literature, it is common to perform single-objective design optimization 
of an energy system. In fact, the benchmark CGAM problem was formulated as a single-objective design optimization 
problem, where the objective function was the sum, on a rate basis, of the purchased-equipment, maintenance and 
operation, and fuel consumption costs. However, in real-life applications, costs must be analyzed individually. In this 
work, a new perspective is thus taken, in that multi-objective optimization of the CGAM system is effected using a 
hybrid algorithm, which attempts to combine the strengths of deterministic and heuristic methods. The objective 
functions in the multi-objective optimization are the fuel consumption cost rate and the total capital investment. The 
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Pareto front is obtained for all non-dominated solutions, which encompasses the original CGAM single-objective 
solution. Based on the Pareto front, the designer is better equipped to make decisions based on specific, appropriate 
scenarios. 
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