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Abstract. The Galerkin method is applied to the non-linear stochastic diffusion problem. The uncertainty is present in 
the coefficients of diffusion equation and it is modeled by random variables. The chaos polynomials is used to 
approximate the stochastic behavior of the problem. The approximate solutions obtained through Galerkin method are 
compared with Monte Carlo simulation in terms of the statistical moments of random variables generated by the 
random field solution. 
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1. INTRODUCTION 
 

In the last decades there was a significant increase of scientific works in stochastic analysis applied to the 
engineering systems. This fact is related to the increase of the computational capacity and the appearance of new 
mathematical formulations in classic numerical methods in engineering, such  as the finite elements, finite differences 
and boundary elements. 

The stochastic analysis applied to engineering systems has origin in the study of stochastic differential equations. 
This area consists of the existence uniqueness study; of solutions for differential equations differentiate in that the 
coefficients of the equation are represented by random variables or random processes. This area has been presenting a 
lot of interest on the part of the mathematicians for presenting a communion among several areas of knowledge of the 
mathematics as theory of the measure, partial differential equations, theory of the probability and etc. 

The the finite elements method (FEM) has been used thoroughly in the solution of defined problems by differential 
equations. Some  applications of FEM can be found in problems of elasticity, heat conduction, electromagnetism and 
others. FEM was applied in stochastic problems with the disturbance technique to treat the influence of the uncertainty 
in the behavior of the numerical solution. Ghanem and Spanos (1989) presented the spectral stochastic finite elements 
method that had a proposal different from the method of the perturbation stochastic finite elements method. 

This study intends to obtain approximate solutions for the problem of heat transfer with non-linearity in the 
termophysics properties. Ávila and Franco (2005) presented numerical solutions for the problem of heat conduction 
using the method of Galerkin, for construction of the approximate solution with projection space generated by the chaos 
polynomials. 
 
2. NON-LINEAR PROBLEM OF HEAT CONDUCTION 
 

In this section, the stochastic non-linear problem of heat conduction is presented. The non-linear term appears due to 
dependence of the conductivity coefficient with the temperature field. This mathematical model is well-known; 
however, the literature presented cases where the properties are deterministic. The stochastic heat conduction in a 
limited interval,Ω ⊂ \ , is defined as 
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with ( )2f L∈ Ω  and 
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where 0 1,κ κ  are constants of the thermal conductivity properties. This study intends that these properties are modeled 
by random variables. These properties should satisfy the following requirements, 
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The expressed condition in Eq. (3) assures the existence and uniqueness of the stochastic non-linear problem of heat 
conduction. 



 
3. NOTATION AND SPACE OF FUNCTIONS 
 
 In this section are presented some definitions and notations that will be used along this study. The principle of the 
causality in problems with uncertainty in the source term or in the parameters of the response of the system will present 
a stochastic behavior. The solution space for these problems should contain functions to present this behavior. The 
mathematical formulation of this study uses the approaches of the Sobolev spaces and product tensor associated to the 
theory of probability. 
 
3.1. Stochastic Sobolev Spaces 
 
 The association among the theories of probability, product tensor and the Sobolev spaces of originate the stochastic 
Sobolev spaces. The numeric solutions obtained in these spaces, and the approach of these with the theoretical solutions 
is based in the isomorphism between the stochastic Sobolev spaces and Sobolev spaces of defined in more complex 
measure spaces, Babuška et all (2005) and Frauenfelder et all (2005). The theoretical solution is defined in the 
following Sobolev space 
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For the numerical solutions that will be obtained in this study the density property will be used among spaces of finite 
dimension generated by continuous functions. An element ( ) ( )3 1

0,u L ,P H∈ Θ ⊗ ΩF  is defined as  
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4. MODELLING OF THE UNCERTAINTY 
 
 The mathematical modelling of the uncertainty is obligatory for obtaining the numeric solutions for stochastic 
systems. The uncertainty can be modeled through random variable or stochastic processes. In this work the modelling of 
the uncertainty is made through uniform random variable. They are obtained numeric solutions for two cases of 
modelling of the uncertainty in the coefficient of thermal conductivity 1κ . The uniform random variable has the 
following form 
 

( ) ( )ς θ µ σξ θ= + ,           (6) 
 
where ς  is the property to be modeled and ξ  an uniform random variable with 0ξ =  and 2 1ξ = , with that is 

concluded that µ ς=  and ( )2
σ ς ς= − . 

 
5. METHOD OF GALERKIN 
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The method of Galerkin will be used to obtain approximate solutions for the stochastic non-linear problem heat 
conduction. The space ( )( )3 1

0,L ,P; HΘ ΩF  is the space of solution of the defined problem in Eq. (1), however the 

space of approximate solutions will be defined as n m⊗K M  with { } 1
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polynomials. The approximate solutions have the following form, 
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where i ju  are coefficients to determine. Being put the approximate solution in the Eq. (1)  
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Eq. (8) defines the residue generated in the differential equation of the problem given in Eq. (1). It is important to point 
out that it was not still attributed any mathematical model, presented in Eq. (1), for the current uncertainty in the 
coefficient of thermal conductivity. Being taken one n mϕ ∈ ⊗K M  defined as ( ) ( ) ( ), p qx xϕ θ φ ψ θ=  and product 

internal as defined in Eq. (5) and imposed the minimization condition of the projection of the residue in n m⊗K M  
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Apart of the uncertainty model given to the coefficient of thermal conductivity, Eq. (9), it represents a system of non-
linear equations, which can be represented as, 
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with ( ) ( )0 1K U K K U= + . The elements of the matrix 0K  e 1K  are given by 
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The non-linear part of the matrix 1K  is given for 
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One can observe that in both cases the current non-linear terms in the matrix 1K  are polynomial type. To obtain the 

solution of Eq. (10) the Newton-Raphson method will be used. For such the residue . .: n m n mR →\ \  following 
 

( ) ( ) .R U K U U F= −            (13) 
 
The solution of the non-linear system in Eq. (10) will occur when ( ) 0R U ∗ =  with * .n mU ∈\ , assumed that the residue 

function is expanded analytically in Taylor series of first order in .n mU ∈\ , 
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Impose the condition ( )1 0R U ∗ =  in Eq. (14), one can be determined *U  as 
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The Eq. (15) is a recursive equation to determine the solution of the non-linear system defined in Eq. (10). For a given 
precision for the system solution, Eq. (10), the iterative process will be concluded when one verifies the following 
conditions, 
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where ,U Rε ε +∈\ , are arbitrary tolerances. The expressed conditions in Eq. (16) constitute the finalize criterion of the 
iterative process used in this study. 
 
6. NUMERIC RESULTS 
 

In this section the numeric solutions are presented for the unidimensional problem non linear stochastic heat 
conduction. A numeric example is presented in that the uncertainty on the property is modeled by a uniform random 
variable, 
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where 

1

21000 W.mκµ =  and 
1

210 W.mκσ = . The property 0 1000 W.mκ =  is considered as deterministic. The 

domain is defined for ( )0, LΩ =  with 1mL =  and it is submitted a generation of heat ( ) 1000 W m ,q x x Ω= ∀ ∈ . 
The statistical moments of first and second order of the random field of temperatures are the parameters of evaluation of 
the numeric solutions obtained by the Galerkin method. The Monte Carlo simulation is used to accomplish the 
evaluation of the Galerkin method. The statistical moments was obtained from 1000 realizations of the non-linear 
stochastic problem of heat conduction, 1000SN = . To quantify the approximation between the statistical moments of 

first and second order is defined the error average value function ( )
u

Eµ  and the variance error function ( )
uVE , 

respectively. The error average value function, :
u

Eµ
+Ω → \ , is defined as, 
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where luµ  is the average value obtained through Monte Carlo and uµ  the average value through the method of 

Galerkin. The variance error function, :
uVE +Ω → \ , is defined as, 
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where uV�  is variance function obtained through Monte Carlo and uV  is the variance function obtained by means of 
Galerkin method. In Fig. 1a and 1b are shown the graphs of the average value functions and error in average value, 
respectively, obtained through simulation Monte Carlo simulation and for the Galerkin method. 
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Fig. 1b shows a good approximation between the average value function obtained through the Galerkin method and that 
obtained through Monte Carlo. It is important to mention that such approach was with only two chaos polynomials. In 
Fig. 2a and 2b are shown the graphs of the functions variance and error in variance, respectively, obtained through 
simulation of Monte Carlo and for the method of Galerkin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Fig. 2b shows a loss in the quality of the approach of the function variance, relatively the approach that was 
obtained for the average value function of the random field of temperatures. 
 
7. CONCLUSION 
 

In this work the method of Galerkin was applied to obtain numeric solutions to the problem non linear stochastic 
heat conduction. The uncertainty on the coefficient of thermal conductivity was modeled by a uniform random variable. 
The statistical moments of first and second order obtained from the numeric solutions showed a satisfactory approach. It 
was observed that the quality of the approach decreases for the second statistical moment. 
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