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Abstract. A Neural Network (NN) combined with PD (proportional-derivative) controller is proposed in this paper for
application in underactuated nonlinear systems. The main goal of this work is to solve the reference trajectory tracking
problem of a three degrees of freedom (DOF) helicopter platform model with two control inputs obtained by Euler-
Lagrange method. This control technique is derived from the estimate of the helicopter nonlinear function performed
by the NN, combined with an outer PD tracking loop and an auxiliary signal that provides robustness in the face of
unmodeled bounded disturbances, as well as unstructured unmodeled dynamics. The PD controller design is based on
a LQR controller, which is designed by using the helicopter linearized model. Lyapunov second method is employed to
establish stable weights adaptation laws, which are tuned on-line, and the control system stability, thereby guaranteeing
small tracking errors and bounded control signals. The Lyapunov stability of the control system are presented and realistic
simulation results are discussed. These results improve two features concerning the literature: 1) the NNPD can deal with
parametric uncertainty and variation and unmodeled dynamics, and 2) it considers control of the 3 DOF helicopter model.

Keywords:Adaptive Control, Neural Networks, Underactuated Systems, Autonomous Helicopter, Lyapunov Stability.

1. INTRODUCTION

An important aspect in any control design is the effect of parametric uncertainty and variation and unmodeled dy-
namics. Intensive research efforts have been devoted to adaptive control of uncertain nonlinear systems. Universal
approximation properties of Neural Networks (NNs) have been widely employed to model complex nonlinear physi-
cal characteristics. The focus in this paper is on control design of underactuated nonlinear systems, in others words,
mechanics systems with fewer actuators (i.e. controls) than degrees of freedom (DOF) of the systems, for example under-
water and aerospace vehicles. A Tandem Fan (TF) in a3 DOF platform is considered in this work, which is obtained by
Euler-Lagrange method. This system is a laboratory model helicopter produced by Quanser (2005) that emulates some of
the dynamics of a tilt-rotor in helicopter configuration (Rysdyk 2005) and allows the evaluation of multivariable control
techniques.

The main goal of this work is to solve the reference trajectory tracking problem. An approach for this issue is presented
in (Calise 2001), which is an adaptive output feedback design procedure, employing feedback linearization coupled with
an NN. Nevertheless, the control design was tested only by controlling the pitch axis of the helicopter (Kutay 2005). The
control technique proposed is based in (Lewis 1999) and belong in the large class of approximation-based controllers,
which provide robustness even in the presence of unknown dynamics and disturbances.

Therefore, the contributions of this paper include:1) a control framework to deal with the three degrees of freedom
of the helicopter model, that is not performed either in (Calise 2001) or in (Kutay 2005);2) an adaptation law to the NN
weights and the formal stability proof of the closed-loop control scheme by employing Lyapunov’s second method, and
3) a performance comparison of this controller with a PID controller, aiming at showing the improvements, as well as ro-
bustness and adaptation capability to handle parametric uncertainty and variation and unstructured unmodeled dynamics.

2. HELICOPTER DYNAMICS AND PROPERTIES

Consider the helicopter model shown in Fig. 1 with active disturbance mass, which can provide a parametric vari-
ation to the system defined by the designer. The dynamic model of the system was obtained byx-convention for the
Euler angles, using the rotational kinematic of a rigid body (Galindo 2000). The Fig. 2 presents the coordinate axes
of the helicopter in a right-hand inertial frame{x, y, z}, where the pointC is the gravity center and guidance point,
{x′, y′, z′} denotes the right-hand body frame of the TF,Mh is the helicopter mass andMcw is the counterweight mass.
The generalized coordinates of the system (q) are depicted by the roll (φ), pitch (θ) and yaw (ψ) angles, the lengthdθ is
the distance between theO andC points anddφ is the half distance between the fans. The moments of inertia of the TF
with respect to each axis in the (φ, θ, ψ) frame isIφ, Iθ andIψ, respectively. The forces produced by the fans areFf , to
the front motor, andFr to the rear.

The helicopter dynamics can be described by the Euler-Lagrange model conform

M(q)q̈ + Co(q̇,q)q̇ + F(q̇) + G(q) + τd = τ (1)

whereM(q) ∈ R3×3 is the inertia matrix, which is positive definite,Co(q̇,q) ∈ R3×3 is the Coriolis/centripetal matrix,
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Figure 1. Helicopter with Active Disturbance Mass. Figure 2. Tandem Fan in a 3 DOF Platform.

F(q̇) ∈ R3 represents the friction terms,G(q) ∈ R3 is the gravity vector andτd(t) ∈ R3 denotes the bounded unknown
disturbances, including unstructured unmodeled dynamics. The control input vectorτ ∈ R3 is the torque in the gener-
alized coordinate frame. The matricesM(q), Co(q̇,q) andG(q) can be found in (Galindo 2000) and the vectorF(q̇) in
(Lewis 1999). The following properties present some physical features of the helicopter that simplify the solution of the
control problem.

Property 1 The Coriolis/centripetal vector can always be selected so that the matrixS(q̇,q) ≡ Ṁ(q) − 2C0(q̇,q) is
skew-symmetric. Therefore,xTSx = 0 for all vectorx.

Property 2 The disturbances term are bounded so that‖τd(t)‖ ≤ dB .

In Fig. 2,Ff andFr can be equivalently represented by a forceFs , Ff + Ft applied to theC point plus a torque
Fddφ around thez′-axis, whereFd , Ff − Ft. Assume thatFf = KfVf andFr = KfVr, withKf being a motor force
constant andVf andVr the voltages applied in the front and rear motors, respectively. From (Galindo 2000), the torque
in the inertial frame is given byτ = T(q)V, whereT(q) ∈ R3×2 is a control transformation matrix andV = [Vf Vr]T .

Thus, it can be seen that the helicopter model is a nonlinear, coupled and underactuated system, in other words, the
yaw (ψ) motion occurs due to the combined motion of the roll (φ) and pitch (θ) angles. Furthermore,θ andψ are not be
controllable forθ = 0, 5kπ, with k = 1, 3, . . . and forφ = kπ, with k = 0, 1, . . ., respectively.

3. ADAPTIVE CONTROL VIA RNA

3.1 Approximation-based control framework

From Equation (1), the helicopter dynamics can be rewritten by

Iφφ̈+ Fφ + τdφ = dφKfVd (2)

M̄(q̄)¨̄q + C̄o( ˙̄q, q̄) ˙̄q + F̄( ˙̄q) + Ḡ(q̄) + τ̄d = τ̄ (3)

whereq̄ = [θ ψ]T and τ̄ = T̄(q)Vs, and the Property 1-2 continue valid. In control design the objective is generally
to make the system follow a prescribed and bounded reference trajectory,q̄r = [θr ψr]T , which take the pointC as a
guidance point. Finding a control signalsVs = Vf + Vr andVd = Vf − Vr that causes this to occur is called the tracking
design problem. Thus, given the reference trajectoryq̄r, the tracking errore(t) = [eθ(t) eψ(t)]T and filtered tracking
errorr(t) = [rθ(t) rψ(t)]T are defined by

e = q̄r − q̄ (4)

r = ė+ Λe (5)

with Λ = diag{Λθ,Λψ} a positive definite design matrix. Then, the Eq.(5) is a stable system so thate(t) is bounded as
long as the controller guarantees that the filtered errorr(t) is bounded. From (Lewis 1999), it is possible to shown that

‖e‖ ≤ ‖r‖
σmin(Λ)

and ‖ė‖ ≤ ‖r‖ (6)

whereσmin(Λ) is the minimum singular value deΛ and‖ · ‖ is the2-norm. In practical situations, the reference trajectory
always satisfies the following boundedness assumption.

Assumption 1 The reference trajectory is bounded so that‖[qTr ˙̄qTr ¨̄qTr ]T ‖ ≤ qB , with qB a known scalar bound.
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Differentiating the Equation (5) and invoking the Eq.(3), it can be seen that the helicopter dynamics are expressed in
terms of ther(t) as

M̄ ṙ = −C̄or + f(x) + τ̄d − τ̄ (7)

where the nonlinear helicopter function is defined as

f(x) = M̄(q̄)(¨̄qr + Λė) + C̄o( ˙̄q, q̄)( ˙̄qr + Λe) + F( ˙̄q) + G(q̄) (8)

Vectorx contains all the time signals needed to computef(·) and may be defined asx = [eT ėT q̄Tr ˙̄qTr ¨̄qTr ]T . It is
important to note thatf(x) contains all potentially unknown helicopter parameters, or that hardly can be modeled with
accuracy, like mass, moments of inertia and coefficients friction, expect for theC̄or term in Eq.(7), which cancels out in
controller stability Lyapunov proofs.

Let the nonlinear dynamic of the helicopter, a sort of approximation-based controller is depicted by

τ̄ = f̂(x) + Kdr − τr(t) (9)

with f̂ as an estimate off(x), Kdr = Kdė+ KdΛe two outer PD tracking loops, andτr(t) an auxiliary signal to provide
robustness in the face of disturbances and modeling errors. Sinceτ̄ = T̄(q)Vs, the motors voltages sum is given by

Vs = T̄(q)†[f̂(x) + Kdr − τr(t)] (10)

whereT̄(q)† is the pseudoinverse of̄T(q).
Hence, the controller design and the stability Lyapunov proof of the system are based on the closed-loop dynamic

error (Lewis 1999), which is found by the substitution of the Eq.(9) into Eq.(3), resulting

M̄ ṙ = −C̄or − Kdr + f̃ + τ̄d + τr(t) (11)

where the function approximation error is given byf̃ = f − f̂ .
The controller design problem is to select the estimatef̂ and to define a robust termτr(t) in the control law of Eq.(9)

so that this dynamic error is stable. Solving this problem ensures that the filtered tracking errorr(t) is bounded and the
Eq.(6) guarantee that the tracking errore(t) is bounded. Then, the helicopter follows the prescribes trajectoryq̄r(t).

The closed-loop control structure to theφ angle is done employing a PD controller in theφ dynamic, given in Eq.(2),
which is expressed by

Vd = Kpφ(−φr − φ)−Kdφφ̇ (12)

In the controller design, it will be supposed, for convenience, that the friction torqueFφ and the disturbances term
τdφ(t) are null. So, the transfer function that describe theφ motion is given by

Φ(s)
Φr(s)

= − dφKfKpφ

Iφs2 + dφKfKdφs+ dφKfKpφ
(13)

with Φ(s) = L{φ(t)}, whereL is the Laplace transform operator.
If the gainsKpφ andKdφ are positive constants, the inner closed-loop system Eq.(13) is said stable. Defining

φr(t) , Kdψrψ(t) = Kdψ ėψ(t) +KdψΛψe(t) (14)

is possible to note a framework shaped by cascade PD controllers, where the PD controller given in Eq.(14) provides a
reference to the controller described in Eq.(12). Consequently, the roll angleφ(t) will be bounded only if the filtered
tracking errorr(t) is bounded.

Therefore, the solution of the reference trajectory tracking problem, consequently the control of the helicopter model
with three degrees of freedom, is given by Eq.(10), Eq.(12) and Eq.(14). The Figure 3 illustrate the approximation-based
control structure of the helicopter. Note that only the angular position of the helicopter is used for feedback, not requiring
those states concerning the angular velocity.

3.2 Approximation of the helicopter nonlinear function using neural networks

The feedforward NN used in this work is shaped for three layers and has two layers of adjustable weights. The net
outputy ia a vector withm components that are determined in terms of then components of the input vectorx by

yi =
Nh∑
j=1

[
wij σ

(
n∑
k=1

vjkxk + θvj

)
+ θwi

]
i = 1, . . . ,m (15)
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Figure 3. Approximation-based control framework to the helicopter.

whereσ(·) are the activation functions andNh is the number of hidden-layer units (neurons). The inputs-to-hidden-layer
interconnection weights are denoted byvjk and the hidden-layer-to-outputs interconnection weights bywij . The threshold
offsets are denoted byθvj andθwi (Lewis 1999).

Many different activation functionsσ(·) are commonly used, including sigmoid, hyperbolic tangent and gaussian. In
this paper will be used the sigmoid activation function

σ(x) =
1

1 + e−x
(16)

whose gradient, for instance, is given byσ′(x) = σ(x)[1 − σ(x)]. By collecting all the NN weightsvjk andwij into
matrices of weightsWT andVT , the Eq.(15) can be written in matrix notation as

y = WTσ(VT x) (17)

with the vector of activation functions defined byσ(z) = [σ(z1) σ(z2) · · · σ(zNh
)]T for a vectorz ∈ RNh . The threshold

are included as the first columns of the weight matrices. To adapt this feature, the vectorsσ(·) andx need to augmented
like x ≡ [1 x1 x2 · · · xn]T , for example. So, any tuning ofW andV also includes tuning of the thresholds.

For control purposes, it will be used a important feature of the NN, the universal approximation property (Barron 1993)
where, for every smooth functionf(x) from Rn → Rm, there exists a neural net works such that

f(x) = WTσ(VT x) + ε (18)

for some weightsW andV. This approximation holds for allx in a compact setS and the functional estimation errorε is
bounded so that‖ε‖ < εM , with εM a known bound dependent ofS. Then, an estimate off(x) is given by

f̂(x) = Ŵ
T
σ(V̂

T
x) (19)

with Ŵ e V̂ the actual values of the NN weights given by a tuning algorithm andf̂(x) is the NN output. Now, some
definitions and assumptions are required to proceed.

Definition 1 GivenA = [aij ] andB ∈ Rm×n, the Frobenius norm is defined by

‖A‖2
F = tr{ATA} =

∑
i,j

a2
ij (20)

with tr{} the trace. The associated inner product is〈A,B〉F = tr{ATB}. The Frobenius norm is compatible with the
2-norm so that‖Ax‖ ≤ ‖A‖F ‖x‖, with A ∈ Rm×n andx ∈ Rn (Lewis 1999).

Definition 2 For notational convenience, all the NN weights are defined asẐ = diag{Ŵ, V̂} and the weight estimation
errors are defined as̃V = V − V̂, W̃ = W− Ŵ andZ̃ = Z − Ẑ.

Definition 3 The hidden-layer output error for a givenx is defined as

σ̃ = σ − σ̂ = σ(VT x)− σ(V̂
T

x) (21)

The Taylor series expansion ofσ(·) for a givenx may be written as

σ(VT x) = σ(V̂
T

x) + σ̂′(V̂
T

x).Ṽ
T

x +Oσ(Ṽ
T

x) (22)

with

σ′(ẑ) ≡
[
dσ(z)
dz

]
z=ẑ

= diag{σ(ẑ)}[I − diag{σ(ẑ)}] (23)
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the Jacobian matrix anOσ(Ṽ
T

x) denoting the higher-order terms in the Taylor series. Denotingσ̂′ = σ′(V̂
T

x), result

σ̃ = σ′(V̂
T

x)Ṽ
T

x +Oσ(Ṽ
T

x) = σ̂′Ṽ
T

x +Oσ(Ṽ
T

x) (24)

The importance of the Eq.(24) is that it replacesσ̃, which is nonlinear iñV, by an expression linear iñV plus higher-
order terms. This allows to determination of tuning algorithms for the matrices of the weights.

Assumption 2 On any compact subset ofRn, the ideal NN weights are bounded by known positive values so that‖V‖F ≤
VB , ‖W‖F ≤WB or ‖Z‖F ≤ ZB withZB known.

Lemma 1 (Bound on NN Input x) For eacht, the vectorx(t) is bounded by

‖x‖ ≤ c1 + c2‖r‖ ≤ qB + c0‖r(0)‖+ c2‖r‖ (25)

for computable positive constantsci.

Lemma 2 (Bounds on Taylor Series Higher-Order Terms)For sigmoid activation function, the higher-order terms in
the Taylor series, in Eq.(24), are bounded by

‖Oσ(Ṽ
T

x)‖ ≤ c3 + c4‖Ṽ‖F + c5‖Ṽ‖F ‖r‖ (26)

for computable positive constantsci.

The function estimate error of the helicopter,f̃ = f − f̂ , is obtained adding and subtractingWT σ̂ from f̃ , resulting

f̃ = WTσ + ε− Ŵ
T
σ = WT σ̃ + W̃

T
σ̂ + ε (27)

Adding and subtractinĝW
T
σ̃ in Eq.(27), yields

f̃ = W̃
T
σ̃ + W̃

T
σ̂ + Ŵ

T
σ̃ + ε (28)

Using Eq.(24) from the Def. 3,̃f may be written as

f̃ = Ŵ
T
σ̂′Ṽ

T
x + W̃

T
(σ̂ − σ̂′V̂

T
x) + δ (29)

where disturbances terms are defined as

δ(t) = W̃
T
σ̂′VT x + WTOσ(Ṽ

T
x) + ε (30)

It is important to note that the NN reconstruction errorε(x) and the higher-order terms in the Taylor series expansion
of σ̃ have exactly the same influence as disturbances in the error system.

Lemma 3 (Bounds on the Disturbance Term)The disturbance term in Eq.(30) is bounded according to

‖δ(t)‖ ≤ (εM + c3ZM ) + c6ZM‖Z̃‖F + c7ZM‖Z̃‖F ‖r‖ or ‖δ(t)‖ ≤ C0 + C1‖Z̃‖F + C2‖Z̃‖F ‖r‖ (31)

withCi known positive constants.

Note thatC0 becomes larger as increases the NN estimation errorε. The Proofs of Lemmas 1-3 are omitted here due
to the lack of space. The importance of these lemmas lies on the definition of an upper bound to the‖x(t)‖, ‖Oσ(·)‖ and
‖δ(t)‖ by known computable function‖Z̃‖F and‖r(t)‖. In this case, if the controller guarantees that‖Z̃‖F and‖r(t)‖
are bounded, thus the norms given by Eq.(25), Eq.(26) and Eq.(31) will be bounded as well.

3.3 Neural networks weight tuning for tracking stability

Substituting the Equation (29) into Eq.(11), the dynamic error of the system is expressed by

M̄ ṙ = −(Kd + C̄o)r + Ŵ
T
σ̂′Ṽ

T
x + W̃

T
(σ̂ − σ̂′V̂

T
x) + δ + τ̄d + τr (32)

The next theorem shows how to tune the weights in the NN so that tracking and internal stability are guaranteed.

Theorem 1 Consider the control structure of the Fig. 3 to the3 DOF helicopter described by Eq.(1), with the control
laws given by Eq.(10), Eq.(12) and Eq.(14), with robustness term

τr(t) = −kz(‖Ẑ‖F + ZM )r (33)

wherekz > C2 > 0. Let the NN weight update laws be provided by

˙̂W = F(σ̂ − σ̂′V̂
T

x)rT − k‖r‖FŴ (34)
˙̂V = GxrT Ŵ

T
σ̂′ − k‖r‖GV̂ (35)

whereF andG are positive definite matrices andk a positive constant defined in the design. Then, for a large enough
control gainKd, the filtered tracking errorr(t) and the NN weight error‖Z̃‖F are Uniformly Ultimately Bounded (UUB).
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Proof: Let the NN approximation property Eq.(18) hold for the functionf(x) given in Eq.(8) with a given accuracyεN
for all x in the compact setSx ≡ {x | ‖x‖ < bx} with bx > qB . DefiningSr ≡ {r | ‖r‖ < (bx − qM )/(c0 + c2)}, using
Eq.(25), and consideringr(0) ∈ Sr, then the approximation property holds.

Consider the Lyapunov function candidate

V (r , W̃, Ṽ) =
1
2

rT M̄(q̄)r +
1
2
tr{W̃

T
F−1W̃}+

1
2
tr{Ṽ

T
G−1Ṽ} (36)

Note thatV is definite positive,V > 0. DifferentiatingV and substituting the Eq.(32), it is obtained

V̇ = −rTKdr +
1
2

rT ( ˙̄M − 2C̄o)r + tr{W̃
T
(F−1 ˙̃W + (σ̂ − σ̂′V̂

T
x)rT )}+

+ tr{Ṽ
T
(G−1 ˙̃V + xrT Ŵ

T
σ̂′)}+ rT (δ + τ̄d + τr) (37)

The skew symmetric property (Property 1) makes the second term zero, and since˙̃W = − ˙̂W and ˙̃V = − ˙̂V, the tuning
rules yields

V̇ = −rTKdr + k‖r‖(tr{W̃
T

Ŵ}+ tr{Ṽ
T

V̂}) + rT (δ + τ̄d + τr) (38)

= −rTKdr + k‖r‖tr{Z̃
T
(Z − Z̃)}+ rT (δ + τ̄d + τr) (39)

Sincetr{Z̃
T
(Z − Z̃)} = 〈Z̃,Z〉F − ‖Z̃‖2

F ≤ ‖Z̃‖F ‖Z‖F − ‖Z̃‖2
F and substituting the Eq.(33), results

V̇ ≤ −kdmin‖r‖2 − k‖r‖‖Z̃‖F (‖Z̃‖F − ZM )− kz(‖Ẑ‖F + ZM )‖r‖2 + ‖r‖(‖δ‖+ ‖τ̄d‖) (40)

with kdmin the minimum singular value deKd. From Property 2 and substituting Eq.(31), obtain

V̇ ≤ −kdmin‖r‖2 − k‖r‖‖Z̃‖F (‖Z̃‖F − ZM )− (kz − C2)‖Z̃‖F ‖r‖2 + ‖r‖(dM + C0 + C1‖Z̃‖F ) (41)

≤ −‖r‖[kdmin‖r‖+ k‖Z̃‖F (‖Z̃‖F − ZM )− (dM + C0)− C1‖Z̃‖F ] (42)

where the last inequality holds due tokz > C2 > 0. Thus,V̇ is guaranteed negative as long as the term in brackets in
Eq.(41) is positive. DefiningC3 = (1/2)(ZM + C1/k) and completing the square yields

V̇ ≤ −‖r‖{kdmin‖r‖+ k(‖Z̃‖F − C3)2 − (dM + C0)− kC2
3} (43)

and toV̇ < 0, require

‖r‖ > dM + C0 + kC2
3

kdmin

≡ br or ‖Z̃‖F > C3 +

√
C2

3 +
dM + C0

k
≡ bZ (44)

Therefore,V̇ is negative outside a compact set. According to a standard Lyapunov theory, this demonstrates the UUB
of both‖r‖ and‖Z̃‖F as long as the control remains valid within this set. �

Note that‖r(t)‖ can be kept arbitrarily small by increasing the gainkdmin in Eq.(44). The right-hand sides of Eq.(44)
can be taken as practical bounds onr(t) and the NN weight estimation errors. The tuning parameterk offers a design
trade off between the relative magnitudes of‖r(t)‖ and‖Z̃‖F . Moreover, the Equation (44) represents the worst case one
can have. In fact, the actual convergence region is a subset of the set given by Eq.(44).

There is in this scheme no required preliminary off-line tuning phase. In fact, selecting the initial weightsW(0) and
V(0) as zero takes the NN out of the circuit and leaves only the outer PD tracking loop in Fig. 3. The PD termKdr in
Eq.(10) can then stabilize the system until the NN updates its weights. A formal proof reveals thatKd should be large
enough and the update laws have shown that the NN weights are tuned on-line in real time; as the NN estimates the
helicopter nonlinear function, the tracking error decreases.

The first term of the NN tuning laws are modified versions of the standard backpropagation algorithm. The last
terms correspond to the e-modification (Lewis 1999) in standard use in adaptive control to guarantee bounded parameter
estimates; they form a special sort of forgetting term in the weight updates. Their function is to add toV̇ a quadratic term
in ‖Z̃‖F so it can be shown thaṫV is negative outside a compact set in the (‖r(t)‖,‖Z̃‖F ) plane. The second term is a
bequest from the function approximation errorf̃ , when purposed to write the Eq.(30) by‖r(t)‖ and‖Z̃‖F . A robustness
control term is needed to overcome higher-order modeling error terms.

4. SIMULATION RESULTS

To illustrate the NN control scheme presented in Fig. 3 and to compare its performance, two controllers were proposed:
1) NNPD: a NN combined with PD controller and2) PID: a proportional-integral-derivative controller. The PD and PID
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controllers design are based on a LQR controller, using a3 DOF helicopter linearized model obtained from Eq.(1). Such
design procedure can be seen in (Quanser 2005).

The simulations were carried out in MATLAB and used the3 DOF helicopter parameters produced by Quanser (2005).
The designed gains to the controllers were:Q = diag{[100 500 2000 100 60 1500 50 10]} andR = diag{[5 5]} to the
LQR controller design, and consequently, to the linear controller design. To the NNPD was consideredk = 2, kz = 0.05,
F = kc.INh×Nh

, G = kc.In×n, with kc = 20, Nh = 10 andZM = 10. It was considered a sampling time equal
to T = 0.01s and a helicopter motors saturation voltage equal to5V. The initial posture vector(qi) to the reference
trajectory and to the both controllers was defined asqi = [0◦ − 27◦ 0◦]T . It was also considered on the simulations
‖F(q̇)‖ ≤ 3.5 N.m andτd ∼ N(0; 0.01).

The performance of the controllers is quantified through the Mean Absolute Error (MAE) expressed by

ēθ =
1

tfinal

∫ tfinal

0

|θr(t)− θ(t)|dt and ēψ =
1

tfinal

∫ tfinal

0

|ψr(t)− ψ(t)|dt (45)

whereēθ and ēψ denote the mean absolute errors referring to pitch angleθ(t) and to yaw angleψ(t), respectively.500
Monte Carlo simulations were done and the mean and the variance were calculated from the errors set.

The Figure 4 shows theC point motion of the helicopter, described in Fig. 2, in a circular trajectory where the PID
controller presents a tracking error larger than NNPD controller, and where it has not been able to track the prescribed
trajectory. Int = 15 s, the mass disturbance step with mass nominal variation of17.8% was applied in the system to
analyze the robustness in the presence of parametric variation. In the Figures 4-5, it is possible to see the NN capability in
to approach the helicopter nonlinear function and cope with parametric uncertainty, and likewise reduce the unknown and
bounded disturbances effects. The NNPD behavior in the beginning of the trajectory is due to large weights estimation
errors, and consequently, to large NN approximation error.
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Figure 4. Reference and helicopter trajectories.
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Figure 5. Generalized coordinates of the helicopter.

The tracking error of both controllers remain bounded, however in the moment that the mass disturbance step was
applied only the NNPD could deal with parametric variation, conform show the Fig. 6. The PID controller requires exact
knowledge of the helicopter dynamics in order to work properly, but it does not happen with the NNPD that estimate the
dynamic parameters of the TF in real time. The Figure 7 illustrates a fundamental difference between the control input
signals of the controllers. Int = 15 s, the NN increases its contribution on the control signal when it was capable to adapt
to the mass variation provided by the disturbance step. The mean of the MAE, using the NNPD and considering the pitch
angleθ(t), was3.5 times lesser than PID. This result illustrates that the NNPD can handle with perturbation effect and
determine variables, which are hard to estimate, like friction force. Both controllers allow the helicopter to follow the
referenceψr(t) in an accurate and efficient way, as show the mean and standard deviation of the yaw angle in the Table 1.

Table 1. Performance of the controllers: Mean± Standard Deviation.

Controller θ(t) (degree) ψ(t) (degree)
PID 2.6283 ± 0.0187 0.5832 ± 0.0590

NNPD 0.7428 ± 0.0227 0.6149 ± 0.0639
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Figure 6. Tracking error of the pitch and yaw angles.
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Figure 7. Control input signals of the helicopter.

5. CONCLUSIONS

A stable control framework capable of dealing with the three degrees of freedom of a helicopter, without requiring
knowledge of the helicopter dynamics, was derived in this work by using an NN approach to solve the reference trajectory
tracking problem. This feedback servo-control scheme provides better performance than that provided by a PID controller
when there are bounded disturbances and mass disturbance step. Real parameters of the helicopter produced by Quanser
were used in realistic simulations to compare the proposed controller with the PID.

In summary, a neural network combined with a PD controller was capable of estimating the helicopter nonlinear
function through the NN weights on-line tuning and to follow the prescribed trajectory. With this controller it was possible
to model the uncertainties effects as the friction surface, parametric variation and unknown and bounded disturbances.
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