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Abstract.This paper discusses the theoretical analysis of axisymmetrical supersonic flows in conventional and no 

conventional nozzles (plug nozzles) and makes a comparative analysis between these nozzles for their main 

parameter(thrust coefficient) under several operational conditions.Characteristics of  Plug nozzle flow fields are discussed 

based on the results of numerical simulations.The mathematical formulation obtained through this theoretical analysis is 

solved numerically. Basic control equations  and characteristic equations (Mach lines) are deduced.The transonic flow 

region is also analyzed An equation for an initial-value line is developed together with the parameters along this line. 

The system of differential equations formed by the compatibility valid along the characteristics is solved from its initial-

value line.This is solved numerically using characteristics method.The numerical results show that a better 

performance of the plug nozzles is obtained under over expansion conditions. This comparison is based on the criteria 

of correlation of the propulsive performance nozzles parameter (thrust coefficient) for various operational conditions. 
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1. INTRODUCTION  
 

The altitude adaptation is the most attractive feature of the plug nozzle. It is  briefly mentioned in the introduction, 

and is illustrated in Fig.1It means that the plug nozzle is able to adapt its jet to the surrounding ambient pressure, 

without considerable thrust loss.The decreasing ambient pressure with increasing altitude requires such an adaptable 

nozzle, especially for single-stage-to-orbit vehicles.Then,since the nozzle should carry the vehicle over the complete 

range of the launch,it would experience even worse off-design conditions than multiple-stage vehicles,which may have 

different nozzle-design conditions for the multiple stages.Therefore,especially for single-stage-to-orbit vehicles the 

altitude adaptation is an indispensable feature.However,the adaptation is only present in underexpanded condition1 

Wisse (2005).  

In the Figure 1,Hagemann et al.(1998),summarizes the principle flow phenomena of plug nozzles with full length 

and truncated central bodies at different off-design (top and bottom) and design (center) pressure ratios that were 

observed in experiments and numerical simulations.For pressure ratios lower than the design pressure ratio of a plug 

nozzle with a well-contoured central body, the flow expands near the central plug body without separation,and a system 

of recompression shocks and expansion waves adapts the exhaust flow to the ambient pressure pamb.  

 

 
Figure 1 Flow Phenomena of a Plug Nozzle and Truncated Body at Different Pressure ratio po/patm,Off-Design 

(top,bottom) and Design 9center) Pressure Ratio from Hagemann at al,1998 

 

The characteristic barrel-like form with several inflections of the shear-layer results from various interactions of 

compression and expansion waves with the shear layer, and turbulent diffusion enlarges the shear layer farther 



downstream of the throat. The existence of the overexpansion and recompression processes is inferred from up - and 

down-variations of plug wall pressure profiles observed in various cold-flow tests and numerical simulations.At the 

design pressure ratio (see Fig. 1,left column,center), the characteristic with the design Mach number should be a straight 

line emanating to the tip of the central plug body, and the shear layer is parallel to the centerline.However,for circular 

plug nozzles designed with contouring methods proposed by Angelino and Lee,(1993),no exact one-dimensional exit 

flow  profiles can be achieved,because both methods use the Prandtl–Meyer relations that are only valid for planar 

flows. 

 

2.  STEADY TWO-DIMENSIONAL TRANSONIC FLOW IN PLUG NOZZLES  
 

The determination of the flow pattern in the throat region of a 2-d plug nozzle under choked conditions may be 

accomplished by applying small perturbation techniques to the equations governing the choked flow Zucrow,(1977)and 

Wisse (2005).Of the several methods that have been proposed for analyzing the flow field in the throat region of a two-

dimensional nozzle,that due to Sauer (1947) is the simplest. 

Figures 2 and  3 illustrates schematically the general features of the throat region of a plug nozzle.The contour  of 

the nozzle is symmetrical with respect to the axis x,and it is assumed that the fluid flows in positive direction  of the x 

axis.Figure 3 it is anticipated that the cross-section of the sonic surface,termed the sonic line,is a parabola; It is seen in 

Figure 3 that the sonic line starts from the wall of the nozzle at a point slightly upstream from the throat G,the minimum 

flow area,proceeds downstream,and  crosses the centerline of the nozzle at point 0.Point 0 denotes the origin of the 

coordinate system employed in the analysis due to Sauer(1942).It corresponds to the intersection of the sonic line with 

the x axis. The location of point 0,the distance ε downstream from the throat G,is determined from the analysis. 

 

 

Figure 2    Plug Nozzle                                                   Figure 3 Geometric of the Throat and Coordinate System 

for either a two-dimensional planar or axisymmetric irrotational flow,the perturbation equation is Zucrow,(1977): 
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where, δ = 0 for a planar flow and  δ = 1 for an axissymmetric flow.Because the flow in the throat region is 

essentially 1-d and sonic,the undisturbed free-stream velocity U∞ is chosen as the critical speed of sound a*;the 

corresponding Mach number M∞ is therefore, qual to unity. Substituting U∞  and   M∞ =1 into equation (1),obtain: 
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components.Introducing  u´ and v´ into equation (2) transforms it to  
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Since the flow in the throat region is irrotational,it is possible to define a potential function φ for the velocity. Hence, 

by definition : 
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where φ´ is the nondimensional perturbation velocity poyential. Consequently, 
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where u=φ´x and v = φ´y   .Substituting equations (5)m and  Equation (6) into equation (3),obtain:                                          
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Equation (7) is the governing equation for the nondimensional perturbation velocity potential for a transonic flow. 

The nonlinear pdf is solved using an approximate method where a power series solution is assumed,with the 

coefficients of the power series chosen in such a manner that the differential equation and the boundary conditions are 

satisfied.  In case,the velocity potential φ´(x,y) may be defined by a power series in y, in which the coefficients of y = 

f(x). Since u(x,y) is an even function of y. φx` = u must be an even function of y;consequently, only even power of y are 

included in power series. Thus, 
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where y
0
 = 1. The corresponding expressions  for terms yφ,xxφ,xφ ′′′ and yyφ′ are accordingly 
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where f ’0(x) denotes df0(x)/dx,and so forth.Substituting the above expressions into equation (7) and rearranging the 

result, yields the following polynomial in y.Thus, 
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Since the polynomial equation (13) must be satisfied for all arbitrary values of x and y,the coefficients of each 

power of y must be identically zero. Sauer,(1947) truncated the series after the f4(x)y4 term. Setting the coefficients de 

y
0
 and y 

2
 equal to zero and solving for f2(x) and f4(x) yields: 
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This f2(x) and f4(x) may be determine from the derivatives of f0(x). When y=0, u´(x,0) = f `0(x), where u´(x,0) 

defines the nondimensional perturbation velocity distribution along the x axis. Consequently, knowing u´(x,0), one can 



determine f2(x) and f4(x) from equations (14) and (15),and, therefore,the flow field. If the axial perturbation velocity 

distribution is assumed to be linear, u´(x,0) is given by : 
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where α is a constant,termed the coefficient of the linear nondimensional axial perturbation velocity.Substituting 

equation (16) into equations (14) and (15) gives: 
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Substituting equations (17) and (18) into equation (8),yields 
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Substituting equation (19) into equations (5) and (6) yields: 
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Equations (20) and (21) yield the nondimensional perturbation velocities for a linear axial perturbation velocity 

distribution. The critical curve where M=1 and  ( ) 2
av~u~

*22 =+ may be determined as follows .First,substitute the 

definition of nondimensional perturbation velocities.Thus,  
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Dividing through by a*
2
 yields: 
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Expanding equation (23) and neglecting powers of u´and v´yields: 

u´= 0    Consequently,the Critical curve where M=1 is established by setting u´= 0 in equation (20).Thus, 
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Next, it is necessary to locate the origin of the coordinate system in the nozzle.From Figure 3 it is seen that  

0=v′=v=v~  in x=ε and y=y t. Substituting those values for x and y into equation (21) yields: 
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Equation (25) locates the origin of the coordinate system relative to the nozzle throat. 

3. Determination of the Nozzle Contour 

Figure 4 illustrates the geometric model employed for determining the curvature k of the nozzle wall at the 

narrowest cross-section (throat).The curvature k is defined as the change in the direction of the tangent to a curve per 

unit distance along that curve.The radius of curvature at the throat ρt is the reciprocal of the curvature k. From Figure 4 
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At the point T,the curvature k is given by  
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To the differentiate dv´/ds one may write 
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Considerer a nozzle throat with a radius of curvature ρt,which is large compared to the throat radius yt. Hence,ρt 

>>yt, (dx/ds) ≅1,and (dy/ds) ≅0. Accordingly,equation (28)  
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From equation (21) v´x  is given by  
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The value de v´x at the point T,where x = ε and y = y t,may be determined from equation (31),one obtain the 

following equation (31).Substituting that result into equation (30),obtain the following equation for the radius of 

curvature ρy. Thus, 
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Up to this point it is assumed that the nondimensional axial perturbation velocity u´(x,0) is known,and that a radius 

of curvature ρt for the nozzle wall,as specified by equation (32),is required for obtaining the correct value for u´(x,0).By 

inverting the interpretation of the preceding results, the value of u´(x,0) may be determined from the geometrical 

properties of the nozzle throat. Solving equation (32)  for α yields: 
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Substituting  equation (33) for α into equation (25) yields the following equation for ε.Thus, 
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4. Initial-Value Line for Supersonic Flow Field Calculations 

 To initiate for the two-dimensional supersonic flow field by the method of characteristics, a line along which M > 1 

across the entire throat is needed.The sonic line determined by Sauer´s  Method (1947) is unsuitable because Mach lines 

from the sonic line intersect the nozzle wall upstream from the throat point T.Because point T was employed as a 

boundary condition in the evaluation equation (32),the region of the flow field upstream from point it is within the 

range of influence of point T,and the method of characteristics cannot be initiated from an initial-value line that is in 

range of influence of downstream point.The line where 0v~ = ,which is only a slight distance further downstream than 

the sonic line,may be employed as an initial-value line for the method of characteristics.The equation of the line,which 

is the locus for 0v~ = ,is obtained from equation  (21) by setting v´= 0.Thus, 
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The dimensional velocity components u~ and v~   may be determined along the line 0v~ =  at any point where  x and 

y are specified. Since the flow is isentropic,the speed  of sound a is a known function of the magnitude of the flow 

velocity V. Knowing V and a, the Mach number \m may be calculated. The static thermodynamic properties p,ρ and T 

may be computed from the stagnation values P,ρ0  and T and the Mach number M. Hence,all of the gas dynamic 

properties for the following fluid may be determined along a line that is suitable for initiating a numerical solution by 

the method of characteristics for the supersonic flow field in the divergence. The mass flow rate for the nozzle may be 

determined by integrating across any line generated in the throat region by applying the foregoing analysis. Because of 

the approximations made in  the analysis,the accuracy of the results depends to some extent on the choice of the initial-

value line to be employed  as the  initial-value line. The 0=v~ line (see equation 35) is frequently employed as the 

initial-value line.The axial thrust developed at the throat  of the nozzle may be calculated by integrating the momentum 

and pressure forces acting across the the initial-value line. 

5. Mass Flow rate and Thrust 

The differential mass flow rate dm crossing the element of area dA  (conventional nozzle) is given  

ydyπ2u~ρVdAρmd ==&                                                                                                                                              (36) 

Mass flow rate cross the v=0 line. Integrating equation (36) gives 
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The actual integration of equation (37) is accomplished by applying Simpson´s  rule.Dividing the integration 

interval NPI-1 equal subintervals,yields the following algorithm. 
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Thrust across the v=0 line.O thrust is the sum of the pressure forces and the momentum flux. From Figure obtain the 

following expression for the differential thrust acting on dA. 
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Substituting for dm from equation (39),obtain 
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Integrating equation (40) yields the thrust F. Thus, 
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Equation (41) may be integrated by Simpson´s rule. Thus, 
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The differential mass flow rate dm crossing the element of area dA (Plug nozzle) is given  

rdyπ2u~ρVdAρmd ==&                                                                                                                                             (43) 
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Substituting equation (44) into equation (43) and neglecting dy
2
 obtain:   
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The actual integration of equation (45) is accomplished by applying Simpson´s  rule.Dividing the integration 

interval NPI-1 subintervals yields the following algorithm. 
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Similarly for thrust in plug nozzle   
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To determined flow field or the plug nozzle is admitted isentropic expansion of the jet to the final pressure produces 

a jet Mach number M, and if γ is the ratio of specific heats, then the angle of refraction is: 
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Based upon a value of  ν = Mach 1 

In Plug Nozzle of the type shown in Figure 2 all the supersonic expansion occurs externally. It is of course possible, 

and in many cases advantageous,to piece to the total expansion between internal and external expansion Berman,(1960). 

If  assume that the internal expansion is a simple corner expansion,the total expansion angle is the sum of the internal 

and external expansions: 
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where ν is called the Prandtl-Meyer angle. 

6. Solution Method 

The basic contour design of the linear plug nozzle is a straightforward process, in principle based on the application 

of the inviscid irrotational supersonic Prandtl-Meyer flow theory [1908] derived from the Euler equations.The contour 

is two-dimensional,since the segments are placed linearly next to each other.The determination of the  contour surface 

of  the  plug nozzle is done of the form  where the direction of a frictionless wall is changed by an angle δ at the point 

where the incident expansion wave impinges on it.No reflected wave is required for causing the streamlines crossing 

wave to become parallel to the surface.The incident expansion wave ends at the surface because its inclination is such 

that the reflected wave is neutralized or canceled.  I.e.,if  a weak wave of the angle ∆θ incident about the surface of plug 

nozzle,a reflection wave  equal strength must be present of the form to satisfy the boundary condition in surface of the 

plug nozzle. Similarity obtain all points on the plug nozzle. If we know the position and the properties of a point on the 

wall, we can easily determine those of the adjacent point until we reach the exit section point. The plug nozzle Figure 3 

is designed admitting design pressure in 5 region equal ambient pressure in a determined altitude of the flight.In this 

case,how the waves splitting the regions are equal families, hence, the waves of the fan expansion of Prandtl-Meyer are 

equal strength.  

 

ν∆-=θ∆                                                                                                                                                                 (50) 

Of the 1 region  to 2 region there is one Mach line or characteristic of same family,Thus 
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Admitting boundary surface of plug nozzle how a streamline, knowledge the properties and location of the  point in 

the wall of divergent and angle divergence,denoting by 1 region which contain this point and using properties in this 

region how initial values for  determination boundary surface of plug nozzle Figure 6.thus, with the design pressure and 

the stagnation pressure in combustion camber specificied,obtain through isentropic relations,the number Mach and 

Prandtl-Meyer angle in the region,hence,also all properties in the region.  
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where j,iα  i = region , j = angle α with i,j = 1…n 

 

Figure 6 a): Contour plots of pressure (upper half)  and Mach number (lower half) distributions  ( Pressure Ratio 71) Ito at al 

(1999) b) Mach Lines 
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 Thus, knowing  all  coordinate and angle of the points on wall with the  axis line,determine the ordinate Ycc of the 

radius cone of the plug nozzle. Figure 6b 
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Equation (54)  is applicable  for all n Mach lines. 

Thrust  on Plug Nozzle 

Variation of the Thrust on plug nozzle, Pires, (1996) is given by: 

 ( )[ ] )y()R)(PP()R(PπDF iiw wiambwamb y-y--y-P- +=                                                                  (55) 

7. Result 

Developed  computational codes in Fortran 77 Pires, (1996),Lee (1963 and 1964) with objective of analyze 

different nozzle concepts with improvements in performance as compared to conventional nozzle  achieved by altitude 

adaptation and,thus,minimizing  losses caused by over-or underexpansion.The plug nozzle provides,at least 

theoretically a continuous altitude adaptation up to their geometrical area ratio. The Figure 8 shows the thrust 

coefficient (CF) of the Plug Nozzle plotted against the pressure ratio.The solid red line denote the ideal thrust coefficient 

and the dashed green  line the theoretical CF of the conventional nozzle.In the low pressure ratio region,the standard 

nozzle not produce as much thrust as the plug nozzle (blue line).That  is the reason for higher performance of the plug 

nozzle at lower altitudes.The plug nozzle operates at nearly peak thrust efficiency in the wide range of the pressure ratio 

than the conventional nozzle type Bell. 

 



 

8. Conclusion 

The flow structure and the performance of the plug nozzle are numerically investigated.The results clearly showed 

the main advantages of the plug nozzle.Conventional Bell-type rocket nozzles, which are in use in practically all of 

today’s rockets, limit the overall engine performance during the ascent of the launcher owing to their fixed geometry. 

Significant performance losses are induced during the off-design operation of the nozzles,when the flow is 

overexpanded during low-altitude operation with ambient pressures higher than the nozzle exit pressure,or 

underexpanded during high-altitude operation with ambient pressures lower than the  nozzle exit pressure. In the case of 

overexpanded flow, oblique shocks emanating into the flow flowfield adapt the exhaust flow to the ambient pressure. 

Further downstream,a system of shocks and expansion waves leads to the characteristic barrel-like form of  the exhaust 

flow.In contrast,the underexpansion of the flow results in a further expansion of the exhaust gases behind the rocket. 

Off-design operations with either overexpanded or underexpandedIt is shown that significant performance gains result 

from the adaptation of the exhaust flow to the ambient pressure. Special attention is then given to altitude-adaptive 

nozzle concepts, which have recently received new interest in the space industry.In general, flow adaptation induces 

shocks and expansion waves,which result in exit pro. less that are quite different from idealized one-dimensional 

assumptions.The consideration of derived performance characteristics in launcher and trajectory optimization 

calculations reveal significant payload gains at least for some of these advanced nozzle concepts. 
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