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Abstract. We prove the existence of stationary solutions for a nonlinear problem modelling the growth of a nonnecrotic spheroid tumor
in absence of inhibitor agents. We assume that the rate of consumption of nutrients by the cells is greater than the rate of transference
of nutrients from the vasculature and that this balance is an increasing function of the nutrient concentration. The proliferation rate
considered depends on the nutrient concentration and is given by either an increasing function or one that assumes only a negative
minimum value. Some bounds for the stabilizing radius also are presented.
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1. Introduction

In recent years a great number of mathematical models has been proposed in order to describe the growth of tumors.
Most of them are free boundary value problems consisting of one or more reaction-diffusion equations and an equation
derived from conservation of mass for tumor cells. The model we consider here is a nonlinear version of that one initially
proposed by Greenspan (1972,1976), and recently studied by Byrne-Chaplain (1995) and Friedman-Reitich (1999), to
describe the growth of a nonnecrotic tumor. In this paper we treat the existence of stationary solutions for this model.

In Section 2.1 we establish results of existence, uniqueness and localization of stationary solutions. The proliferation
rateS, which depends only on the nutrient concentrationσ, is supposed to be either an increasing function or one that
assumes only a negative minimum value. In turn, the absorption ratef(σ) is assumed to be a nondecreasing function, what
is a natural assumption. These conditions are more general than that ones handled in some recent articles, see (Byrne-
Chaplain, 1996; Cui-Friedman, 2001; Friedman-Reitich, 1999). In these articles, both the absorption and proliferation
rates are linear functions.

The technique used to prove the existence of stationary solutions (sub- and supersolutions combined with finding
zeroes of a function) is easy to handle in a computational approach to the problem. Our conclusions are also more general
than the existence results described in the literature, where only linear functions are considered. Estimates on the radius
of the stabilizing solutions are given. Since these estimates are quite general, we think that this article is an important step
in the evaluation of the model considered.

A natural question posed by our results is the stability of the stationary solutions. We intend to treat this question in a
future work.

2. Description of results

2.1 The nonnecrotic model

In the model, the tumor is basically regarded as a spherical mass of live cells, which receive nourishment not only
by diffusion but also by its own vasculature (see Byrne et al., 1995). We consider here only the phase in which the
tumor is nonnecrotic. This means that the concentration of nutrients remains above a critical, experimentally obtained
valueσnec ≥ 0, which maintains the cells proliferation. Below this value, the formation of a necrotic core originates the
necrotic phase of the tumor.

One of the equationsof the model is a reaction-diffusion equation for the nutrient concentrationσ(r, t) :

ε
∂σ

∂t
=

1
r2

∂

∂r

(
r2 ∂σ

∂r

)
− f(σ), 0 < r < R(t), t > 0. (1)

The boundaryR(t) of the tumor is unknown. The diffusion coefficientε ¿ 1 is the ratio between the time scales of the
nutrient diffusion and tumor growth. The reaction termf(σ) is the balance between the rate of consumption of nutrients
by the cells and the rate of transference of nutrients from the vasculature (Byrne-Chaplain, 1995; Friedman-Reitich, 1999).
We assume that the functionf(σ), referred here asabsorption rate, vanishes only atσ = σ0 ≥ 0. We suppose that the
absorption rate is increasing forσ ∈ (σ0, σ̄], whereσ̄ stands for the external nutrient concentration, which is considered
to be constant. Therefore, ifσ > σ0, the consumption rate is greater than the transference rate and the balance between
these rates decreases when the concentration of nutrients is decreasing.

The initial conditions for the unknownsR(t) andσ(r, t) are, respectively,

R(0) = R0 and σ(r, 0) = σ0(r), 0 < r < R0, (2)

and the boundary conditions forσ are

∂σ

∂r
(0, t) = 0 and σ(R(t), t) ≡ σ̄, t > 0. (3)
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(The condition onσr produces smooth solutions at the origin.) For compatibility, the initial data must satisfyσ′0(0) = 0
andσ0(R0) = σ̄.

Thesecond equationof the model

R2 dR

dt
=

∫ R

0

S(σ(r, t))r2dr (4)

describes the evolution of the tumor radiusR(t) and is obtained (Greenspan, 1972) by applying mass conservation to
the tumor, assuming that its rate of growth depends on the number of proliferating cells, which is measured by the
proliferation rate S(σ). This function is a balance between the birth (mitosis) and death (apoptosis) rates of cells. We
assume thatS is continuous and either monotonic on the interval[σ0, σ̄] or that it assumes only one local extrema on this
interval. However, supposing that the number of cells is growing when the nutrient concentration isσ̄, it follows that
S(σ̄) > 0. And assuming thatS increases in a neighborhood ofσ̄, our analysis is done whenS(σ) is either increasing on
[σ0, σ̄] or decreasing on[σ0, Λ] and increasing on[Λ, σ̄], Λ denoting the local minimum ofS.

Similar models are consider in Adam (1996 - see also the references therein).
A stationary solution is an equilibrium configuration in which the radius of the tumor stabilizes. It is obtained as

a pair(σR(r), R) such that both the concentration of nutrientsσR(r) and thestabilizing radiusR do not depend on the
time t.

So, the stationary solutions for the system (1)-(4) are the solutions of the problem:





(
r2σ′R

)′ = r2f(σR), 0 < r < R,
σ′R(0) = 0; σR(R) = σ̄;∫ R

0
S(σR(r))r2dr = 0.

Puttingλ := R2, the change of variablesσλ(r) = σR(rR) transforms this system into the boundary value problem
(BVP)

(r2σ′λ)′ = λr2f(σλ), 0 < r < 1,
σ′λ(0) = 0; σλ(1) = σ̄,

(5)

and the integral equation

∫ 1

0

S(σλ(r))r2dr = 0. (6)

Therefore, a stationary solution for the system (1)-(4) is equivalent to a pair(σλ, λ) satisfying (5)-(6).
In the next subsection we apply the method of sub- and supersolutions to obtain a family of solutions{σλ}λ≥0 of (5).

In Subsection 2.1.2 we solve the integral equation (6) and give an estimate for the stabilizing radius. Since the proofs of
the results in this paper are technical, they will not be presented here.

Of course, our approach in this paper is more general than the method employed in Byrne-Chaplain (1995) or
Friedman-Reitich (1999) to find stationary solutions. In that papers, both the absorption ratef and the proliferation
rateS depend linearly onσ and thus gives rise to an explicit algebraic equation: finding a stationary solution is equivalent
to solve this equation for

√
λ.

Remark 1 Sinceσnec is a experimentally obtained value, the relation betweenσ0 andσnec is unclear: it may be, for
example,σ0 < σnec < σ̄. Let the pair(σλ∗ , λ∗) denote a solution of the problem (5)-(6). Since we first solve equation (5)
and then considerλ as a parameter in order to find a solution of equation (6), the stationary solution for the nonnecrotic
model makes sense only whenσλ∗(r) is aboveσnec. This condition is fulfilled ifσnec ≤ σ0 < σ̄: as we shall see,
σλ(r) > σ0 for all λ ≥ 0.

2.1.1 Solutions of the BVP

In this subsection we summarize the main properties of the solutions of the BVP (5).

Definition 2 A functionuλ ∈ C0([0, 1]) is a subsolutionof (5) if satisfies:
{

(r2u′λ)′ ≥ λr2f(uλ), r ∈ [0, 1]
u′λ(0) = 0, uλ(1) ≤ σ̄.

A functionvλ ∈ C0([0, 1]) is a supersolutionof (5) if satisfies:
{

(r2v′λ)′ ≤ λr2f(vλ), r ∈ [0, 1]
v′λ(0) = 0, vλ(1) ≥ σ̄.

Theorem 3 (Method of Sub- and Supersolutions)Let us suppose that, in problem(5), f is a lipschitzian function with
constantk. Let uλ and vλ be, respectively, sub- and supersolution of that problem Then problem(5) has at least one
solutionσλ such thatuλ ≤ σλ ≤ vλ.



The proof of theorem 3 is technical and can be found, e.g., in Figueiredo (1982).

Remark 4 The method of sub- and supersolutions is valid iff ∈ C([σ0, σ̄]) and if there exists a constantk such that
f(σ) − kσ is decreasing (a condition that is fulfilled whenf is Lipschitz continuous). Its numerical implementation is
simple (see also section 2.2): the method produces solutions of Eq. (5) given as limits of the iterative sequence{σn}∞n=1,
where

(r2σ′n+1)
′ − kλr2σn+1 = λr2 (f(σn)− kσn)

σ′n+1(0) = 0; σn+1(1) = σ̄,

for bothσ1(r) ≡ σ0 andσ1(r) = σ̄.
Taking into account the uniqueness of solutions that we state below, both sequences have the same limit.

Our first result is:

Theorem 5 If f(σ) ∈ C1([σ0, σ̄]) is increasing and vanishes only atσ = σ0, then, for eachλ ≥ 0, there exists a unique
solutionσλ ∈ C2([0, 1]) of the BVP (5) satisfying

σ0 < σλ(r) ≤ σ̄ for all r ∈ [0, 1]. (7)

The properties ofuλ (monotonicity w.r.t.r andλ, convexity and convergence toσ0) are illustrated in the following figure:

s

s
0

s

s

s

s

10

l
1

l > l
1 0

l > l
2 1

l > l
n n-1

l
2

l
n

l = 0
0

l
0

Figure 1: For eachλ ≥ 0, the functionsσλ are convex and increasing. The sequence{σλn} converges uniformly toσ0 in
compact subsets of[0, 1) whenλn →∞.

The proof of theorem 5 is technical and rests on a form of the maximum principle. The convexity of the solutionsuλ
will make it possible to handle non-monotonous proliferation rates.

2.1.2 Stationary solutions

Let the pair(σλ∗ , λ∗) denote a solution of the problem (5)-(6). Thenλ∗ is obtained as a zero of the equationI(λ) = 0,
where the continuous functionI : [0,∞) → R is defined by

I(λ) =
∫ 1

0

S(σλ(r))r2dr (8)

andσλ is given by theorem 5.
In this case, the pair(σ∗, R∗) is a stationary solution for the system (1)-(4), whereR∗ =

√
λ∗ is the stabilizing radius

andσ∗(r) = σλ∗(r/R∗) for all r ∈ [0, R∗].

Theorem 6 If the continuous functionS(σ) satisfies the condition

S(σ0)S(σ̄) < 0 (9)

then there exists at least one positive valueλ∗ suchI(λ∗) = 0. Moreover, ifS(σ) is also monotonic, thenλ∗ is unique.

Proof. Since

I(0) =
∫ 1

0

S(σ̄)r2dr =
S(σ̄)

3



and

lim
λ→∞

I(λ) =
∫ 1

0

S

(
lim

λ→∞
σλ(r)

)
r2dr =

S(σ0)
3

,

the existence is consequence of the continuity of the functionI(λ). The uniqueness follows from the monotonicity of
I(λ). 2

We now handle more general cases. The proof of the next result is based on a geometrical construction that strongly
depends on the convexity ofσλ.

Theorem 7 Suppose that, for someα ∈ (σ0, σ̄), S is nondecreasing on[α, σ̄] and

∫ σ̄

α

S(σ)(σ − α)2dσ = 0. (10)

Then there existsλ∗ > 0 such thatI(λ∗) = 0. Moreover,

3
(σ̄ − α)
f(σ̄)

≤ λ∗ ≤ 6
(σ̄ − α)
f(α)

. (11)

Remark 8 Theorem 7 is also valid ifS ∈ C([σ0, σ̄]) attains a minimum value atσ = Λ ∈ (σ0, σ̄), being decreasing if
σ ∈ [σ0, Λ] and increasing ifσ ∈ [Λ, σ̄]. Under this situation, ifS(σ0) ≤ 0 < S(σ̄), we change (10) by

∫ σ̄

Λ

S(σ)(σ − Λ)2dσ ≤ 0.

The technique applied in the last proof may also be used to obtain bounds forλ∗, even whenS does not satisfy (10).
As an example we cite

Proposition 9 Suppose that the continuous functionS(σ) is increasing and satisfiesS(σ0) < 0 < S(σ̄). Then

λ∗ ≥ max
{

3(σ̄ − α)
f(σ̄)

,
6(σ̄ − β)

f(σ̄)

}
, (12)

where

α = min
{

ξ ∈ [σ0, σ̄] :
∫ σ̄

ξ

S(σ)(σ − ξ)2dσ ≥ 0
}

and

β = min
{

η ∈ [σ0, σ̄] :
∫ σ̄

η

S(σ)
√

σ − ηdσ ≥ 0
}

.

Now we state the existence of solutions for (5)-(6) when neither (9) nor (10) are satisfied. From now on we assume
that the proliferation rateS ∈ C([σ0, σ̄]) attains a minimum value atσ = Λ ∈ (σ0, σ̄), being decreasing ifσ ∈ [σ0,Λ] and
increasing ifσ ∈ [Λ, σ̄]. The proof of the result below is obtained by refining the technique used to demonstrate theorem 7.

Theorem 10 LetS be as above. In addition, suppose thatS(σ0) = 0 < S(σ̄) and

∫ σ̄

σ0

S(σ)dσ ≤ 0.

Then there exists at least oneλ∗ such thatI(λ∗) = 0. Moreover,

λ∗ ≥ 6
(σ̄ − Λ)
f(σ̄)

. (13)

Remark 11 In the last Theorem, we can changeS for a function that increases fromσ0 to a maximum valueΛ and
then decreases fromΛ to σ̄. However, the form ofS stated in the Theorem appears to be more natural under the model
considered. See section 2.3.



2.2 Numerical implementation

The analytical techniques used to solve problem (5)-(6) induces naturally a numerical method to deal with the prob-
lem. The numerical procedure described below was first intended to test this method and to compare our outputs with
results given in other papers. Since the numerical outputs are coherent with the theoretical results obtained by us and
other authors (for linear rates), we have in mind a rigorous analysis of our method.

To compare our results with those obtained by other authors, we consider

f(σ) = (σ − 0.3)(σ + 0.5), S(σ) = 4σ
(σ

σ̃
− 1

)

and

I(λ) =
∫ 1

0

S(σλ(r))r2dr.

The values of̃σ are calculated from the given values ofα by the equation

σ̃ =
2(α2 + 3α + 6)

5(α + 3)
,

σ̃

2
≤ α ≤ 1,

which is equivalent to Eq. (19).
In the figures below the graphs ofS(σ) andI(λ) are shown, forα = 0.6, 0.7, 0.8 and0.9. The interval[λ1, λ2] is

displayed, where

λ1 =
3(σ̄ − α)

f(σ̄)
=

3(1− α)
1.05

e

λ2 =
6(σ̄ − α)

f(α)
=

6(1− α)
(α− 0.3)(α + 0.5)

.

The zeroλ∗ of I(λ) is to be found in this interval, according to theorem 7, what is confirmed by our numerical results.
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Figure 2: In Fig. (2) we havẽσ correspondent toα = 0.6. The right-hand side (a) displays the graphs off(σ) andS(σ).
The left-hand side (b) displaysI(λ); the interval considered isλ1 ≈ 1.1428, λ2 ≈ 7.2727, andλ∗ ≈ 1.8967.

To approximate the functionsσ∗ = σλ∗ we used an iterative method based on super- and subsolutions (see remark 4),
where two numerical sequences are generated, one departing from the subsolution and the other from the supersolution.
Both sequences converge to the solution, which is unique (see theorem 5). One function of these sequences was chosen
to represent the solution, when the difference between the functions of each sequence was less the10−3 and also the
difference between elements of both sequences. In each iteration, centered finite difference was used in a uniform 100
points grid. A maximum of 9 iterations was necessary, in the “critical case” correspondent to the least possible value for
α. We point out, however, that we have no error analysis for the iterative method.

The simplest method was chosen to evaluateI(λ): trapezoidal rule in a 100 points uniform grid. To find the zeroλ∗
of I(λ), the bisection method with approximation of the order of10−3 was used.

To compare our results with those obtained in other papers, we have considered the linear case



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0. 5

0

0.5

1

1.5

a

f(σ)

S(σ)

0.5 1 1.5 2 2.5 3 3.5 4
0. 1

0.08

0.06

0.04

0.02

0

0.02

0.04

I(λ)

b

Figure 3: Here we havẽσ correspondent toα = 0.7. The right-hand side (a) displays the graphs off(σ) andS(σ). The
left-hand side (b) displaysI(λ); the interval considered isλ1 ≈ 0.8571, λ2 ≈ 3.75, andλ∗ ≈ 1.3257.
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Figure 4: In Fig. (4) we havẽσ correspondent toα = 0.8. The right-hand side (a) displays the graphs off(σ) andS(σ).
The left-hand side (b) displaysI(λ); the interval considered isλ1 ≈ 0.5714, λ2 ≈ 1.8462, andλ∗ ≈ 0.8232.

f(σ) = σ and S(σ) = σ − σ̃,

with σ0 = 0, σ̄ = 1 and0 ≤ σ̃ < 1. It holds

α = 4σ̃−3, λ1 = 12(1− σ̃) and λ2 =
24(1− σ̃)
4σ̃ − 3

, for 0.75 < σ̃ < 1.

Theorem 7 guarantees that

2.64 ≤ λ∗ ≤ 44, if σ̃ = 0.78

and

0.48 ≤ λ∗ ≤ 1.1429, if σ̃ = 0.96.

Using the numerical approach described above, we find

λ∗ ≈ 4.7697, if σ̃ = 0.78 (14)



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0. 5

0

0.5

1

1.5

f(σ)

S(σ)

a
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.025

0.02

0.015

0.01

0.005

0

0.005

0.01

I(λ)

b

Figure 5: Here we havẽσ correspondent toα = 0.9. The right-hand side (a) displays the graphs off(σ) andS(σ). The
left-hand side (b) displaysI(λ); the interval considered isλ1 ≈ 0.2857, λ2 ≈ 0.7143, andλ∗ ≈ 0.3832.

and

λ∗ ≈ 0.6363, if σ̃ = 0.96. (15)

However, as mentioned before,η =
√

λ∗ is obtained as a solution of an algebraic equation, namely

tanh(η) =
η

1 + Λη2
, (16)

whereΛ = σ̃/3 ∈ (0, 1/3). The approximate solutions of Eq. (16) are

λ∗ = η2 ≈ 4.7681 if σ̃ = 0.78

and

λ∗ = η2 ≈ 0.6362 if σ̃ = 0.96,

which are very close to our results, given by Eqs. (14) and (15).
Friedman-Reitich (1999) observed that the constantΛcrit = 0.2727... satisfies

η(Λ) <
1√
Λ

, if Λcrit < Λ < 1/3, (17)

whereη(Λ) denotes the solution of Eq. (16) forΛ ∈ (0, 1/3). The estimate we have obtained is

η(Λ) ≤ 2

√
3(1− 3Λ)
4Λ− 1

, if 0.25 < Λ <
1
3
.

Our estimate is not only valid in a larger interval than that described in Eq. (17) but also better whenΛ is very close to
1/3. For example, whenΛ = 0.32, we have

2

√
3(1− 3Λ)
4Λ− 1

≈ 1.3093 <
1√
Λ
≈ 1.76781.

2.3 Comments

The logistic formS(σ) = aσ(1− σ/σ̃) is considered in Byrne-Chaplain (1995), whereσ̃ is a constant, the termsaσ
andaσ2/σ̃ meaning the birth and death rates, respectively.



In this case, ifσ ∈ (0, σ̃), it holdsS(σ) > 0 and, ifσ > σ̃, S(σ) < 0. Therefore,

0 ≤ σ0 < σ̃ < σ̄ (18)

is a necessary condition for the existence of stationary solutions, sinceσλ(r) ∈ (σ0, σ̄] for all λ ≥ 0 andr ∈ [0, 1]. So, it
was impossible to find a stationary solution as a limit of evolutionary solutions in the numerical experiment presented in
that paper, wheref(σ) = 2σ − 1.2 andσ0 = σ̃ = 0.6.

If σ0 > 0 in (18), there exists a stationary solution, since (9) is fulfilled. Ifσ0 = 0 in (18) (which corresponds to an
avascular tumor in Byrne-Chaplain (1995)), then the existence ofλ∗ may be proved as in Theorem 10, if

∫ σ̄

σ0
S(σ)dσ > 0

(see Remark 11).
However, (18) does not appear to be natural: it implies thatS(σ̄) < 0, that is, the proliferation rate is negative

when the concentration of nutrients is maximal, andS(σ) grows when this concentration decreases, until it reaches the
maximum valueS(σ̃/2).

On the other hand, if we suppose a proliferation rate of the form

S(σ) = aσ
(σ

σ̃
− 1

)
,

then (18) is still a necessary condition for the existence of a stationary solution. Remark 8 then implies the existence of at
least one stationary solution if

0 < σ0 < σ̃ < σ̄ and
∫ σ̄

σ̃/2

σ
(σ

σ̃
− 1

) (
σ − σ̃

2

)2

dσ ≤ 0

or

σ0 = 0 < σ̃ < σ̄ and
∫ σ̄

σ0

σ
(σ

σ̃
− 1

)
dσ ≤ 0.

In the first case, we obtain the estimates

3
(σ̄ − α)
f(σ̄)

< λ∗ < 6
(σ̄ − α)
f(α)

whereα ∈ [σ̃/2, σ̄] is such that

∫ σ̄

α

σ
(σ

σ̃
− 1

)
(σ − α)2dσ = 0. (19)

In the second case, we obtain the lower bound

λ∗ > 6
(σ̄ − σ̃/2)

f(σ̄)
.

2.4 Conclusion

The first theoretical results for the nonnecrotical model treated here were obtained by Friedman-Reitich (1999). Since
both the absorption and proliferation rates considered there are linear functions, an explicit stationary solution is available.
(We stress that Friedman-Reitich is mainly devoted to the stability of the stationary solution).

However, since the linearity of the absorption and proliferation rates is an approximation of the actual data, it is natural
to consider more general rates. Of course, neither an explicit stationary solution nor an standard approach to the problem
(5)-(6) is now at hand. Our approach suggests, as a byproduct, a numerical treatment for the problem and gives bounds
for the stabilizing radiusR∗ =

√
λ∗. Comparing with the stabilizing radius for linear absorption and proliferations rates,

our bounds did well.
With respect to the evolutionary problem(1) − (4), we have already some results concerning the stability of the

stationary solution for small values ofε (a condition satisfied in actual conditions): if the solutionσ(r, t) stabilizes, it
converges monotonically to the stationary solutionσλ∗ presented in this paper. Since the stabilizing radiusR∗ can be
numerically computed when the absorption and proliferations rates are known, this would imply, for example, that if a
tumor has radiusR0 = R(t0) < R∗ for some timet = t0 andR1 = R(t1) > R∗ for t = t1 > t0, then either no stationary
solution will be achieved or the tumor will pass to the necrotic phase.
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