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Abstract. In the present paper a 3D Boundary Element (BE) implementation is employed to analyze soil vibration isolation
strategies. In this stationary Dynamic Soil-Structure Interaction (DSSI) problem, the soil is externally excited and generates a
propagating wave field. This resulting wave field induces vibrations on structures placed in the surrounding soil. The idea of this
article is to exemplify some vibration isolation strategies using barriers, such as open or filled trenches, that may be modeled by a
3-dimensional BE implementation. The perfotmed implementation will present the vibration reduction as well as the resulting
propagation wave pattern for distinct barrier properties.
The BE formulation is based on the 3D full space stationary fundamental elastic solution. Barriers are modeled as bounded domains
and the soil is described as an unbounded region. These bounded and unbounded domains are assembled by the sub-region concept.
The regularization of the strong singular kernels, in both domains, is accomplished by means of rigid body concept. For the
unbounded soil the idea of enclosing elements is applied to allow for the use of the rigid body concept. The proposed methodology is
first tested for accuracy by solving an elastic wave propagation problem with known solution. In the sequence the method is applied
to simple vibration isolation problem using trenches.
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1. Introduction

This article reports a Boundary Element (BE) based methodology to study the isolation of vibrations generated by
external sources in contact with the soil and transmitted by the ground in the form of waves. As described by Beskos,
Dasgupta and Vardoulakis (1986), the analytical treatment of vibration isolation by wave barriers in the framework of
linear elastodynamics is based on the theory of wave diffraction. Barkan (1962) was the first author to report some field
investigations for studying the effectiveness of wave barriers. However it is apparent that the analytical treatment of 3D
elastic wave diffraction problems is confined to very simple geometries and idealized conditions and that realistic
problems involving complex geometries can only be solved numerically.

The present work employs the frequency domain direct version of the Boundary Element Method (BEM) for the
solution of vibration isolation problems by barriers in a 3D context. Waves generated by a stationary soil excitation are
reduced in amplitude by means of open or filled trenches protecting nearby structures. In fact the proposed
methodology can deal with trenches of arbitrary shape but, in the present article, it is applied to rectangular barriers
which are very usual in engineering practice. The soil medium is assumed to be linear, elastic, homogenous and
isotropic. Constant quadrilateral boundary elements are employed. These elements have been chosen because they are
simple to implement and because they deliver good results for the displacement components. It is known that in special
case of vibration isolation problems, the free surface response away from the trench is more important than the
deformation of the trench itself or the stress concentration around it. Under these circumstances an implementation with
constant elements can produce results of acceptable accuracy (Dasgupta, Beskos and Vardoulakis 1986).

The full space stationary fundamental solution (Eringen and Suhubi, 1975) was chosen as the auxiliary state used to
transform the Cauchy/Navier differential domain equations into the boundary integral equations, on which the BEM is
based. The use of the full space fundamental solution implies that the soil free surface must be artificially created by a
proper BE discretization. This is not a great disadvantage, since in this wave propagation and isolation problem the
displacement of the free soil surface must be determined in order to assess the efficiency of the isolation strategy.

In the BE implementation two further methodological choices have been made. In this article the soil is an
unbounded domain and the barrier is treated as a bounded region. These two sub-domains are coupled by equilibrium
and kinematic compatibility equations. These two sub-regions may be seen in figure 1. The second choice in the BEM
implementation is the use of rigid body argument to evaluate the strong singularity of traction kernels for the bounded
and for the unbounded domain. In the unbounded domain the idea of the rigid body argument must be used in
conjunction with the so-called enclosing elements (Carrion, 2002, Ahmad and Banerjee, 1988, Araújo et. alli 1997).
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a) Sub-region 1: the unbounded soil Ω1 b) Sub-region 2: the
barrier Ω2

c) The coupled problem

Figure 1: Lateral view of the unbounded soil and the bounded barrier

2. Boundary Element Formulation

The frequency domain differential equations of motion for a 3D linear elastic, homogeneous and isotropic
continuum body, known as Cauchy/Navier equations, can be expressed in terms of the displacement components ui as:

( ) 02
,, =++++ iijjijij ubuu ρωµµλ (1)

where λ and µ are Lamè constants, ρ is the mass density, ω is the circular frequency, bi are the components of body
force. Commas indicate spatial differentiation and summation over repeated indices is assumed.

The auxiliary state used in the BE standard formulation is assumed to be the stationary Full-Space Green’s
Functions or Fundamental Solution with frequency (ω) dependent displacement and traction kernels given by * ( )iju ω

and *( )ijt ω . With the aid of this auxiliary state the differential Eq. (1) can be transformed into the boundary integral Eq.
(2) (Eringen and Suhubi 1975):

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *, , , , , , ,ij j ij j ij jc u u x t x d x t x u x d xξ ξ ω ξ ω ω ξ ω ω
Γ Γ

= Γ − Γ∫ ∫ (2)

In equation (2) no body forces are considered, bi=0. The components uj and tj represent, respectively, the
displacements and tractions at the boundaries of problem being solved. The collocation point is ξ and the field point is
x. The elements of tensor cij are called integration free terms. The solution of Eq. (2) is accomplished numerically. For
this purpose, the boundary Γ of the body is discretized into a series of boundary elements over which displacements and
tractions are assumed to be constant (Dominguez, 1993). Thus a system of linear algebraic equations is obtained and
can be written in matrix form as:

( ) ( ){ } ( ) ( ){ }, , , , , ,ij j ij jH x u x G x t xξ ω ω ξ ω ω   =    (3)

where ( )ωξ ,, xH ij  and ( )ωξ ,, xGij  are the influence matrices resulting from the numerical integration over the

area of each Boundary Element of the fundamental solutions *
ijt  and *

iju  multiplied by the interpolation functions and
the proper Jacobian.

After the boundary conditions are applied, the system can be solved to obtain all the unknown boundary values and,
consequently, an approximate solution to the boundary value problem is obtained. Once the solutions at the boundary
are obtained, Eq. (2) can be used to find the displacements uj at any domain point ξ . The stresses at the domain can be
obtained from a traction boundary integral equation (Brebbia and Dominguez, 1989) given by:

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,ij kij k kij kD x t x d x E x u x d xσ ξ ω ξ ω ω ξ ω ω
Γ Γ

= Γ − Γ∫ ∫ (4)



where the kernels ( )ωξ ,, xDkij  and ( )ωξ ,, xEkij  can be found in the work of Gaul and Fiedler (1993).

2.1. Subregions Concept

As depicted in figure 1, the boundary Γ, of the unbounded soil Ω1 is subdivided in three distinct parts,
Γ=(Γ1∪Γ1

if∪Γ∞). The soil free surface is Γ1, the boundary interfacing with the barrier is Γ1
if and the enclosing surface

for the unbounded soil is designated as Γ∞.  The boundary of the barrier is divided in two regions (Γ2∪Γ2
if). The discrete

matrix representation of these two regions may be divided according the position of the boundary nodes. Using the
subscript (if) for the interface nodes and no indices for the other nodes the algebraic system shown in equations (3) may
be written for the soil and the barrier respectively as (Brebbia and Dominguez 1989):
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Using kinematic displacement compatibility and force equilibrium at the nodes of the common interfaces,
respectively

ififif uuu == 21 and ififif ttt =−= 21 (7)

a final set of equations for the coupled region Ω1∪Ω2 can be obtained:
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Considering that for the present case the surface tractions t1 and t2 are the prescribed boundary variables and that the
surface displacements u1 and u2 and the interface variables uif and tif are the unknown quantities, the equation system (8)
above can be reshaped to yield:
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It should be remarked that the steps described by equations (5) to (8) are rather formal, because the system shown
in equation (9) can be directly assembled.

3. Numerical Implementation

When the field and the integration points do not coincide (ξ ≠ x), the boundary integrals given in equation (2) are
regular and integration is accomplished by using standard Gauss Quadrature. However, when ξ = x, these integrals
become singular due to the ( )rO 1  and ( )21 rO  singularity order of the tensors *

iju  and *
ijt , respectively. The

strategies to deal with the singular integrations are discussed below.
For the *

iju  kernel, which presents weak singularity of order ( )rO 1 , a particular treatment is applied to make
possible the use of standard Gauss Quadrature (Dominguez 1993). The idea is to divide the quadrilateral element in



triangular sub-elements. Then, each triangular sub-element is treated as a quadrilateral one with two corners collapsed
at the collocation point. With this methodology the Jacobian of the transformation presents the order ( )rO  at the

collocation point. This fact cancels the singularity at the mentioned point, which has also the order ( )rO 1 . This
approach has been introduced by Lachat (1975) and has been further developed by Telles (1987).

A possible methodology to evaluate the strong singular kernel *
ijt  is based on the rigid body motion. Nevertheless,

this argument is only applicable to static problems and bounded domains. In the sequence the procedure to apply the
rigid body concept to the dynamics of unbounded domains is described.

3.1 Regularization of the dynamic kernel

As the dynamic and static kernels present the same order of singularity, it is possible to regularize the singular
integral by subtracting and adding the static kernel from the dynamic one. This strategy can be represented as follows.
Calling the indices for the static and dynamic problems, respectively, sta and dyn, adding and subtracting the static
kernels to the boundary equation (2) governing the dynamic problem leads to:
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The integrals in Eq. (10) containing the difference between the dynamic and static kernels are no longer singular
and can be evaluated by standard Gauss Quadrature. The integration of the static singular kernel is evaluated based on
the rigid body motion argument.

3.2 Treatment of unbounded domains

Now the rigid body argument is extended to deal with the unbounded half-space problem by using the so-called
Enclosing Elements. The soil free surface is created by a BE discretization as shown in figures 2a and 3. The free
surface is truncated at some distance from the source. This truncation induces some errors in the solution at points very
close to the outer boundary, but no significant errors are induced away from the mesh border, where the excitation and
the barrier are modeled (fig. 3). In the sequence, a series of Enclosing Elements are introduced to discretize the
boundary Γ∞, as shown in figure 2b. Now it is possible to apply the rigid body concept on the region containing the soil
free surface and the enclosing elements to determine the contribution of the static solution singular kernels in the
unbounded soil domain Ω1, present in equation (10). This idea has been used by Ahmad and Banerjee (1988) in
stationary problems and has been extended by Araújo, Nishikava and Mansur (1997) to transient solutions. Carrion
(2002) has also studied the enclosing elements in his Ph.D. thesis.

4. Numerical Examples

In this section two analyses are performed. The first one is to validate the proposed BE approach and the second
deals with two practical vibration isolation problems.

4.1 Validation of the formulation

First, the BE implementation for the unbounded domain is validated. The soil free surface is discretized with
constant elements of dimension axa, as can be seen in figures 2a and 3. The mesh showed in figure 2a has 632 constant
boundary elements at the soil surface. The embedded barrier is 6a long, 8a deep and 1a wide and (fig. 1b) is discretized
with 68 elements. Besides that, 9 enclosing elements are used to create a boundary around the soil, (figure 2b). A
unitary vertical harmonic traction load tz is applied on the four central elements of the discretized soil surface (see fig.
3). The remaining of the surface is considered to be traction-free. The load is excited at the dimensionless frequency
Ao=ωa/cs=1, where cs is the shear wave velocity of the elastic soil. The vertical with to those reported by Romanini and
Mesquita (1999), using a Green’s function approach. Figure 4 shows the comparison between both approaches. An
analysis reveals that there is a fairly good agreement between these approaches. The discrepancies are probably due to
the difference in the solution methodology.
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Figure 2: The truncated free soil surface discretization (a) and the enclosing elements (b)
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Figure 3: Scheme for the dimensions and position of the soil free surface, loaded area and barrier.



-10 -5 0 5 10

-0.2

0.0

0.2

0.4

0.6

 Carrion/Mesquita
 Romanini/Mesquita uz

y
-10 -5 0 5 10

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

 Carrion/Mesquita
 Romanini/Mesquita

 uz

y

a) Real part uz(x=0.5, y, z=0) b) Imaginary part uz(x=0.5, y, z=0)

Figure 4: Validation of the BE implementation: vertical free surface displacement due to a vertical excitation

In the sequence, the sub-region implementation is validated. Let us first assume that the mechanical properties of
the unbounded soil and the bounded barrier are the same. Under this assumption the behavior of the soil surface
containing the barrier should be the same of the previous example, where only the homogeneous soil was considered.
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Figure 5: Vertical displacement of the soil surface uz for the validation of the sub-region coupling.

Figure 5 shows the vertical displacement uz(x=0.5,y, z=0) of the soil surface along the y-axis for x=0.5, z=0, due to
the same excitation imposed in the previous validation example. Real as well as imaginary parts and the absolute value
of the displacement field are depicted. Two results are shown in each plot. One result reports the homogeneous soil and



the other the coupled soil and barrier, when both domains possess the same properties. An analysis shows that there is a
very good agreement between both solutions. This corroborates to indicate that the present implementation of the sub-
region technique should be correct.

4.2 Vibration isolation problems

The effectiveness of an open or a filled trench as a barrier to ground-propagating waves generated by an external
soil load is studied in two examples.

Example 1: In this case, the open trench is simulated by assigning the stiffness and density of the barrier a much
smaller value than the counterpart of the surrounding soil: Gsoil = 100 Gtrench and ρsoil = 100 ρtrench . All the other
characteristics are the same of the above mentioned examples. Figures 6 show the real, imaginary and absolute value of
the vertical displacements uz(x=0.5, y, z=0) compared to the homogeneous case already mentioned. It is useful to point
out that the trench nodal point is located in the coordinate (x=0.5, y=8.5, z=0). An analysis of the figures, specially of
the absolute value given in figure 6c shows that trenches may be effectively used as vibration isolation barriers. The
trench causes a decrease of the vibration amplitude for the part of the soil protected by the barrier, left side in picture 6c.
On the other hand, waves reflected at the barrier induce an increase of vibration amplitude at the unprotected side of the
barrier, right side in figure 6c.
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Figure 6: Displacements on the half-space surface for an open trench.



Example 2: In the second case, the inverse situation is considered. A filled trench is simulated by making both, the
barrier stiffness and density, much larger the values given to the surrounding soil:  Gsoil = 1/100 Gtrench and ρsoil = 1/100
ρtrench. The soil properties are those of the validation examples. Figure 7 shows the normal displacements uz(x=0.5, y,
z=0) in comparison with the homogeneous soil without barrier. The amplitude of the soil surface displacement is
reduced on the protected side of the barrier, as expected. It seems that the filled barrier, in a first approach, is more
effective than the open barrier. Further studies must be conducted to assess the role of the excitation frequency and
barrier properties.
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Figure 7: Displacements on the half-space surface for the case of filled trench.

5. Concluding Remarks

A numerical method based on the frequency domain direct version of the Boundary Element Method has been
developed to solve isolation vibration problems by means of barriers. The sub-region technique and the rigid body
motion argument, together with the idea of enclosing elements are the main concepts used in the presented BE scheme.
Quadrilateral constant boundary elements have been used in the implementation due to its simplicity. The vibration
isolation, by open or filled trenches acting as barriers for waves that were generated by a vertically harmonic soil load
has been, exemplarily, considered.

In the present article only simple isolation examples, for a single excitation frequency Ao were shown. But the
reported BE methodology represents a numerical scheme that allows the investigation of the influence of several
parameters on the vibration isolation. The influence of barrier geometrical and mechanical properties compared to those
of the soil, excitation frequency, distance from the excitation source and so on, may be investigated by the proposed
scheme. It should also be mentioned that through the described sub-region concept, layered soil-profiles with arbitrary
layer geometry may be included in the analysis. But it should also be mentioned that the strategy of assembling a global
system matrix, like the one given in equation (9) requires large amounts of storage capacity and represents a limitation



to perform the mentioned studies. Alternative schemes that do not require the assembling of the complete system
matrices should be investigated in the future. They would expand the analysis capabilities of the proposed BE scheme.
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