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Abstract. In this work the evolution of a premixed flame under confinement and variable volume conditions is 
studied theoretically. The analysis is based on a hydrodynamic model in which the flame is treated as a surface 
of discontinuity. Its solution in the post-ignition period yields a coupled system of equations for the 
determination of the pressure and the burning rate. The burning rate is modeled using empirical correlations. 
The analysis also solves the thermal and flow fields on either sides of the flame and determines the 
instantaneous location of the flame front together with the overall time required for the flame to reach the end 
of the tube. The results indicate that distinct behaviors are possible for different relations of the frequency ( ) 
and amplitude (A) specified for the variation of the volume of the chamber, with respect to the combustion time 
and evolution of pressure. 
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1. Introduction  
 

Studies of laminar premixed flame propagation in confined vessels have a long history in both 
experimental and theoretical works. The practical importance of these studies is related to the 
understanding of processes inside internal combustion engines. Thermodynamic models such as those 
developed by Bradley and Mitcheson (1976) or Takeno (1979) usually need input from experimental 
data. Later Sivashinsky (1979) developed a hydrodynamic model for flame propagation in a sphere. In 
1992 McGreevy and Matalon constructed a hydrodynamic model that adds the flame structure 
implemented by Peters and Ludford (1983) which was studied by Sivashinsky (1976), and Matalon and 
Matkowsky (1982). They substituted it into Sivashinsky’s model to describe the propagation of a 
planar flame in a closed tube. The coupled effect of pressure variation and Lewis number is the main 
subject of this study. In this case the flame did not experience flame stretch. Tien (1996) developed a 
model to analyse the propagation of a planar premixed flame in a closed tube of length L with varying 
cross-sectional area. Effects of flame stretch on flame propagation in a closed tube were investigated.  

The recent increase in computational power has permitted the modeling of different aspects of 
combustion processes with great detail. Comes to all attention to the detailed chemistry calculations, 
direct numerical simulations of flame turbulence interactions and interactions of flames with 
boundaries or boundary layers. But the combination of all these detailed models to solve the problem of 
turbulent flame propagation in complex geometries with detailed chemistry is still a need for simplified 
computational models that describe only the essential features of the processes involved. Therefore, it 
is important to thoroughly examine the individual process involved in the flame propagation 
phenomenon. In this work, the evolution of a premixed flame under conditions of confinement and 
variable volume is studied theoretically. The analysis is based on a hydrodynamic model in which the 
flame is treated as a surface of discontinuity. Its resolution in the post-ignition period yields a coupled 
system of equations for the determination of the pressure and the burning rate. The burning rate is 
modeled using empirical correlations. The analysis also resolves the thermal and flow fields on both 
sides of the flame and determines the instantaneous location of the flame front together with the overall 
time required for the flame to reach the end of the tube. The results indicate that qualitatively distinct 
behaviors that are possible for different relations of the frequency ( ) and amplitude (A) specified for 
the variation of volume of the chamber, with respect to the combustion time and evolution of pressure. 
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2. Model 
 

The model of the flame propagation consists of a homogeneous premixed combustible mixture that 
occupies a closed tube of length L, Fig. (1). Considering that the curvature of the surface of the flame 
front is always small in comparison with the thickness of the front, that is, the reaction zone, one may 
consider, with sufficient accuracy, that all magnitudes of the conserved variables within this zone are 
functions of a single coordinate, the direction which is perpendicular to the element of front area. In 
this context, the cross section of the tube is taken to be sufficiently narrow so that variations in the state 
of the gas occur primarily along the axial direction. 

The problem consists in determining the influence of burning rate and variation of volume on the 
pressure in the vessel after the mixture is ignited at the left end of the tube. Note that the process of 
combustion occurs under confined conditions and the volume of the chamber undergoes temporal 
variations. The planar flame is assumed to be established from the beginning. After the mixture is 
ignited at the left end, a flame propagates throughout the tube, leaving hot burned behind it. It is 
assumed that combustion occurs under adiabatic conditions.  

 
 
  

 
 
 
 
 
 
 
 
Figure 1. Sketch of flame propagation in a closed tube with variable volume. 
 
3. Governing Equations 
 

The fundamental equations are based on a physical-chemical model that, despites of its simplicity, 
captures all the most significant features of the hydrodynamics of flame propagation in a confined 
volume. It is assumed that the propagation of the flame depends on diffusion of a single component A 
of the mixture, the component limiting the chemical combustion reaction. The combustible mixture is 
assumed to be a homogeneous perfect gas A0. Thus, the thermal conductivity of the mixture depends 
entirely on the properties of the gas A0, while the diffusivity of the component A depends on the binary 
diffusivity of A in A0. To simplify the calculations, it is further considered that the specific heats and 
transport coefficients are constant, temperature independent parameters. For a detailed description and 
discussion about this model, refer to the well-known article of Sivashinsky (1977). 

Since the propagation velocity of the flame is typically much smaller than the characteristic speed 
of sound, the representative Mach number is small. As a consequence, the pressure at any instant is 
practically equalized throughout the tube. The non-dimensional governing equations expressing the 
balance of mass, momentum, energy, and reactant concentration, supplemented by the equation of 
state, are: 
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In this formulation, u = u(x,t) is the axial velocity component, T = T(x,t)  temperature, P = P(t) 

pressure and Y = Y(x,t) reactant mass fraction. The coordinate x is the distance along the tube. The 
variable V = V(t) is the volume of the chamber. An irreversible one-step chemical reaction has been 

  

XL = XL (t) 

Unburned Burned 
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   X = Xf  (t) 
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assumed, with an overall reaction of order n. The dimensionless parameters appearing in the governing 
equations are the heat release q, Reynolds number Re, Lewis number Le and activation energy . By 
definition: 
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Should be noted that the temperature dependence of the reaction rate is of Arrhenius type with an 

activation energy E. The state of the fresh mixture is taken as the reference state using the parameters 

0 , p0 and T0.  The burning rate of an unconfined adiabatic plane flame M0 is chosen as a unit of mass 
flux. The parameters  and  represent the viscosity and thermal conductivity. The Damköler number 
D is chosen as to ensure that the dimensionless burning rate of an unconfined flame, in the limit 

�� , is unity. Lengths are nondimensionalized with respect to L and time, t, with respect to 0 L/ 
M0. The problem involves an additional length scale associated with diffusion, namely: 
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The ratio = LD/L, therefore, characterizes the flame thickness. In the limit � 0, the flow field 
consists of two distinct fluid-dynamic zones, where diffusion and chemical reaction are negligible, 
separated by the flame front. Restricting the model to leading order and introducing the transformation 

( )×= x

0

’’ dxt,xz , equations (1), (3) and (4) become: 
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where 
( )

Dt
D

 is the lagrangean operator. These equations are to be satisfied on either side of z = Zf .  

 
3.1. Jump Relations 
 

The methodology adopted in this work is similar to the one used by McGreevy and Matalon 
(1992). A substitution of the equation of state, Eq. (5), into the energy equation, Eq. (12) leads to: 
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which, after some algebraic manipulations, becomes: 
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=  is an entropy function. Equation (14) means that on each side of the flame the entropy 

of individual fluid elements is conserved. Since the entropy in the fresh mixture is initially uniform, 
 { 1 zz                                             1  f <<= ,       (15a) 
 
for all times. The flow in the burned gas region, however, is rotational. A curved flame generates 
vorticity because the flow is bent (toward the normal direction) on passing through the flame front. 
Hence, the flow field must be determined by solving the coupled equations developed for mass, 
momentum and energy. Considering a planar flame, while accounting for Eq. (14), yields: 
 { fzz0                                         �]�  <<= .       (15b) 
 
Similarly, Eq. (13) states that the reactant concentration of individual fluid elements is conserved. From 
the equations (11), (12) and (13), the solutions for T, Y and  to leading order are: 
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The continuity equation, Eq. (11), can now be integrated to give: 
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Insight into the flow characteristics in these conditions may be obtained from Eq. (19). Considering the 
volume of the chamber is constant, Eq. (19) comes down to Eq. (21) of McGreevy and Matalon (1992). 
The fresh unburned gas is compressed and pushed toward the right end of the tube, while the burned 
products move away from the flame toward the left end of the tube. However, depending on the rate of 
variation of the volume, this behavior can change because the gas speed clearly depends on the rate of 
pressure buildup and the volume.  
 
3.2. Evolution of Pressure and Burning Rate 
 

Integrating Eq. (3) across the flame yields, to leading order in , 
 ( ) ( ) qzzTzzT ff ==-= �� ,           (20) 
 

from which the relations (21) and (22) follow: 
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By definition, the burning rate is calculated as a function of the rate of burned gas produced by 
combustion, namely: 
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Combining the Eqs. (16), (17), (22) and (3), it is obtained: 
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Note that once Zf is known, Eq. (22) provides an implicit way of determining the functional 
relationship ( )z . It remains, however, to determine the burning rate M for which the details within the 
flame zone are essential. The phenomena involved in slow flame propagation lead to the property of 
the flame front; namely, of a definite quantity z grams of mixture burned per unit area of surface or, 
alternatively, of being propagated relative to the non-burning gas in a direction normal to its surface 
with a propagation velocity Sf centimeters per second. The observed motion of the flame is the result of 
the superposition of all kinds of hydrodynamic motions upon the fundamental motion of the flame 
front. By definition: 
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where Af is the front flame area. Similarly to Karlin et al. (2000), this work uses an empirical 
correlation to calculated Sf. The relation (26), shown below as an example, is due to Metagalque (1987-
ver). 
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The parameter  and the coefficients  and  are obtained experimentally. Using Eqs.(17) and (25), 
it is obtained: 
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The system composed of Eqs. (24) and (27) consists of the a closed system of differential equations 
representing the confined combustion in the interior of a tube with variable volume. This system can be 
integrated numerically using, for instance, the Runge Kutta method.  
 
4. Results 
 

The results are presented in terms of the parameters shown in Tab. (1). Typically values of ,  
and the coefficients  and  were defined for that q    6. The geometry of the first case study is 
shown in Fig. (1). The function XL is defined as XL =  1 + A . SIN (  t ). The functional dependence of 
the pressure with the time is shown in Fig. (2a). Two aspects can be observed: the exponential 
increasing of the oscillations of pressure even through the volume change has been maintained under a 
constant rate. This fact clearly shows the influence of the excitation of frequency in the burning 
process. With respect to the largest pressure in the system, it does not occur at the final burn time. 
Essentially, it depends on the coincidence of phase between pressure and volume of the chamber. The 
variation of the burning rate with the product of pressure and volume (PV) is shown in Fig. (2b). The 
results indicate that, after a short initial adjustment, the burning rate M becomes independent of the 
initial condition and increases continuously with PV. However, there is a considerable influence of the 
initial conditions on the evolution of pressure in the chamber, typical of oscillatory processes. Finally, 
the dependence of Zf on PV is presented in Fig. (2c). It can be verified that the form Zf = B.(PV)a is a 
reasonable approximation and independent of initial conditions. Therefore, the correct determination of 
the coefficients ‘a’ and ‘B’ is a very important step in combustion system projects. 



The dependence of the burning time and pressure with the amplitude and frequency is depicted in 
Fig. (3). The signal of the amplitude indicates the initial direction of the movement of the piston. The 
absolute value of the amplitude indicates the maximum amplitude allowed. The time required for the 
flame to reach the right end of the tube is obtained as the time when Zf = 1, that is to say, when all mass 
of gas has been burned. An interesting observation is that there is a range of the frequencies in which it 
does not occur any burning time change. This may be attributed to the fact that the rate of compression 
of the mixture does not influence significantly the burning rate anymore.  According to Fig. (3), one 
can distinguish two cut frequencies in the range of the present simulations. Additional field details may 
be observed from the analysis of the burning time. The high negative amplitudes lower the burning 
time. This behavior can be ascribed to the low volumes and, in consequence, high density. Since the 
burning rate is directly proportional to the burned gas density, the burning time will be lower in this 
range of analysis. Finally, should be noted that the product between the final pressure and volume of 
the vessel is always constant for all cases analyzed in this work. Figure (3) consists of an envelope for 
the use in the optimization of combustion processes. 

 
 
Table 1. Standard simulation. 
 

Parameter Non-dimensional Value 
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(a) Variation of pressure with respect to time (f = 10 , A= –  0.05) ; 
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(b) Variation of burning rate with respect to pressure (f = 10 , A= –  0.05); 

___: Pulse = 1.5   
___: Pulse = 1.01 
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(c) Variation of burning mass with respect to the product of the pressure and volume  
     ( f = 10 , A= –  0.05, Pulse = 0.01 ) ; 
 
Figure 2. Dependence of burning rate (M) on pressure (P) – case of periodic variable of volume. xL =  1 
+ A . SIN (  t ). 
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Figure 3. Frequency field indicating the dependence of burning time on frequency (1/T) and amplitude 
(A) – Pulse = 1.01, =3. – case of periodic variable of volume. xL = 1 + A . SIN (  t ). 
 

The geometry of the second case study is illustrated in Fig. (4). The results are presented in terms 
of the parameters shown in Tab. (2). Vinit is the initial velocity of the piston. The negative sign indicates 
the initial direction of the piston. XLinit designates the initial position of piston.  In this case, the 
function XL is computed with both the pressure and burning rate. The governing equation of this 
movement obeys the Newton law (Rao, 1985). The variable k, which determines the fundamental 
frequency of the device of variable volume, has been defined as the stiffness of the spring. In fact, this 
simulation differs from first case since there is an interaction between the moving flame, in 
consequence the thermo-fluid dynamics of the gas in the chamber, and piston. This dependence is 
depicted in Fig. (5). According to Fig. (5a) lower stiffness values decrease the burning time. This fact 
can be assessed using the Fig. (5b) and (5c). Should be noted that a high reduction in volume causes a 
high burning rate. In this case, it prevailed the higher reduction volume rate, due to initial velocity of 
the piston, than the oscillations, characteristics of the stiffness of the spring, under the burning time. 
However, in systems that present higher frequency, the oscillation effect is more important than the 
initial velocity of the piston. 

Cut frequency 

Cut frequency 



Again, it is observed that there is a range of the frequency for which it does not occur any burning 
time change. For stiffness k < 0.01, practically, burning time changes are negligible. The burning rate 
behavior is shown in Fig. (5c). Analogously, for stiffness k > 100, the burning behavior is similar to 
burning with constant volume. 
 
Table 2. Standard simulation – case of variable of volume by equation of motion for forced vibration 
 

 
Parameter Non-dimensional Value 

 
k Indicate in figure 

Pulse 1.01 
Vinit -1. 
XLinit 1. 

 1. 
 
 
 
 

 
  

 
 
 
 
 
 
 
 
 
Figure 4. Sketch of flame propagation in a closed tube with variable volume by forced vibration. 
 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time
1

2

3

4

5

6

7

8

9

10

P

k=0.01
k=0.1
k=1
k=10
k=100

 
(a) Variations in pressure as a function of time;  
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(b) Variations in position of the piston with respect to time; 
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(c) Variations in burning rate with the time; 
 
Figure 5. Curves indicating the dependence of the burning rate and pressure with time – case of 
variable of volume by equation of motion for forced vibration; 
 
 

Finally, the variations of the unburned gas velocity and the flame velocity as functions of the 
volume of the chamber are shown in Fig. (6), for two different values of spring stiffness. According to 
Eq. (19), the unburned gas velocity can assume negative values. An important difference between the 
burning processes at constant volume and variable volume is the signal of unburned gas velocity. 
Flexible systems lead to greater negative velocities due to greater reduction in the volume and, 
consequently, to greater burning rates.  
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Figure 6. Behavior of the unburned gas velocity with respect to time – case of variable of volume by 
equation of motion for forced vibration; 
 
 
5. Conclusions 
 

The evolution of a premixed flame under conditions of confinement is studied theoretically. This 
work is restricted to flames propagating in narrow channels with thermally insulated walls. 
Furthermore, the assessment of the burning rate is particularized for cases showing functional 
dependence with respect to pressure and temperature. The coefficients characterizing this functional 
dependence are determined experimentally. The results indicate that distinct behaviors are possible for 
different values of frequency and amplitude of excitation. The present method is a viable alternative for 
estimation of the pressure and burning rate in systems for which the volume change and the burning 
rate functions are known. The practical importance of these studies is related to the understanding of 
processes inside internal combustion engines and burning processes. In addition, the computational 
cost of this method is negligible compared to a similar study using the Computational Fluid Dynamics 
(CFD) technique. This fact makes this method suitable for validation of CFD codes. 
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