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Abstract. In the present work direct and inverse radiative transfer problems in scattering and absorbing heterogeneous two-
dimensional media are considered. The domain partition is constructed to be consistent with the propagation of parallel beams of 
radiation, and these directions are used in a discontinuous finite element /discrete ordinates formulation of the radiative transfer 
problem. The inverse problem is solved using a q-ART algorithm that for the particular case of q� 0 corresponds to the maximum 
entropy criteria yielding the well known MART algorithm used in tomographic image reconstruction. 
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1. Introduction  

 
The analysis of direct and inverse problems involving the radiative transfer phenomena has several relevant 

applications in different fields. One bulk example is the use of tomography in engineering and medicine. 
In recent years advances in optical tomography have mainly be driven by applications in biomedical optics. Due to 

the existence of regions within the participating medium where the absorption coefficient is not much smaller than the 
scattering coefficient, or regions in which both are very low, both the diffusion approximation or the standard back 
propagation technique in X-ray tomography may fail (Klose et al., 2002). Therefore, the focus is now directed to the 
construction of model-based iterative image reconstruction (MOBIIR), with a proper modelling of the absorption, 
scattering, and sometimes emission, phenomena using the radiative transfer equation (RTE) (Klose et al., 2002). 

Working with the problem of image reconstruction in two-dimensional media Reis and Roberty (1992) proposed a 
domain partition consistent with a source-detector system for parallel beams of radiation. Carita Montero et al. (2001) 
considered a similar problem for divergent beams of radiation. 

In the present work we use for the solution of the direct radiative transfer problem in two-dimensional media a 
discontinuous finite element method approach with the discrete ordinates method based on a domain partition consistent 
with the source-detector system for parallel beams of radiation (Carita Montero et al., 2002). For the solution of the 
inverse problem of estimating the absorption and scattering coefficients the q-ART algorithm developed by Carita 
Montero et al. (2001) is employed. In order to allow the estimation of both coefficients, even when the intensity of the 
scattered radiation is a few orders of magnitude lower than the intensity of the transmitted radiation, a two steps 
approach is proposed, using two different sets of experimental data. 
 
2. Mathematical formulation of the direct problem 
 

Consider a domain D composed by a heterogeneous absorbing and anisotropic scattering medium. For the steady 
state situation with no spectral dependency, no internal source and transparent boundaries, the interaction of the 
externally incident radiation with the participating medium is mathematically modeled by the linearized Boltzmann 
equation (Özisik, 1973) 
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with the boundary condition 
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  at x D−∈∂
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 (1b) 
 

where φ  represents the radiation intensity, x
�

 represents a particular location in the domain, Ω
��

 is the direction of 

propagation of the radiation, tσ  is the total extinction coefficient (absorption + out scattering), sσ  is the scattering 
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coefficient, 'Ω
��

 is the direction of incident radiation that is scattered at location x
�

into direction Ω
��

 and D−∂  
represents the influx boundary. 

Using the domain partition consistent with parallel beams of radiation, and a particular direction jΩ
��

 (Carita 

Montero et al., 2003), Eq.(1a) is written for each strip , jj nR  of the new discretized domain as 
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                                                                                                    for  j=1,2,…,2J,  , jj nx R∈
�

,  nj=1,2,…,2M           (2a) 

 
with the boundary condition 
 

( ) ( )in
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In Eq. (2a) 2J represents the total number of sources located around the medium. From each source emanates 

parallel beams of radiation that are divided in a total of 2M strips for each source. The intersection of all strips of 
parallel beams of radiation originated at all sources lead to the partition of domain D in elements (polygons) le , 

1, 2,...,l E= , where E is the total number of elements. Each element le  has an area represented by la . 
Observe that the term in the right hand side of Eq.(1a) has been replaced in Eq. (2a) by a Gaussian quadrature. Here 

we have used a discrete ordinates approach with the angular directions being derived from the domain partition. 
 In order to use a shorter notation we make  
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 (3a) 

 
In fact we will use in future formulations  
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ji sjiσ σ= −  , j=1,2,…,2J, i=1,2,…,2J and j� i  (3c) 

 
3. Discontinuous finite element/discrete ordinates method 
 

For the solution of the direct radiative transfer problem given by Eqs.(2) we now march along the discrete 

directions jΩ
��

, j=1,2,…,2J, following each one of the strips , jj nR , with nj=1,2,…,2M. The strips , jj nR  are divided in 

segments (pixels) ,j j

j
n mK , with 1,2,..., 2jm M= . 

Defining the finite element space (Johnson, 1987) 
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that is the space of piecewise polynomials of degree r ≥ 0 with no continuity requeriments across interelement 

boundaries, the influx and outflux boundaries of the segment ,j j

j
n mK  are given by 
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where ( )n x
� �

 represents the outward unit normal at each boundary, and the jump at the influx boundary ,j j

j
n mK −∂  
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the variational formulation of Eq.(2a) is given by (Lesaint and Raviart, 1974) 
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where 
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and g in Eq.(7) is the right hand side term of Eq.(2a). 
 Defining the characteristic functions 
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and 
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with ,( ) ( )
j j

j
r n mp x P K∈

�
, and considering r=0, the following discretized formulation is obtained from Eqs.(7) and (8), 

taking into account Eqs.(2a,b), 
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                                                   j=1,2,…,2J;  nj=1,2,…,2M;  and  mj=1,2,…,2M (13) 
 

where ( )k leφ  is obtained at segment ,k k

k
n mK   such that ,k k

k
l n me K⊂ , and  
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In Fig. 1 is given a representation of the radiation intensities described by Eqs.(14) that are used in the 

discontinuous finite element formulation. 
For the solution of the direct radiative transfer problem we use an iterative procedure marching with Eq.(13) along 

each strip , jj nR , starting at the incoming boundary , jj nR−∂  with the information given by Eq.(2b). The radiation 



  

intensities on the second term on the left hand side, and on the right hand side of Eq.(13), are taken at the previous 

iteration. Here an iterative procedure is used and we keep marching along all strips , jj nR  until a previously established 

stopping criterion is satisfied. 
With this approach we have combined the discontinuous finite element formulation with the discrete ordinates 

method, and as mentioned before the latter is based upon a domain partition consistent with the source-detector system 
for parallel beams of radiation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1- Representation of the radiation intensities for the discontinuous finite element formulation. 
 
3. Mathematical formulation and solution of the inverse problem 
 

Carita Montero et al. (2002) derived and applied the source-detector method developed by Roberty, Silva Neto and 
co-workers (Kauati et al., 2001, Alvarez Acevedo et al., 2002) for inverse radiative transfer problems in two-
dimensional media. 

In this method the so called source and detector (adjoint) problems are formulated, and using a convolution of the 
solution of the adjoint problem with the source problem, a non-linear inverse radiative transfer equation (ITE) is 
obtained. The discrete version of the ITE (DITE), for each strip , jj nR  is given by 
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where the superscript R indicates reference values for the radiative properties, and superscripts s and d represent source 
and detector (adjoint) problems respectively. 

In fact Eq.(15) represents a system of nonlinear equations, with j=1,2,…,2J, and nj=1,2,…,2M. Therefore, there is 
in fact a total of 4JM equations. Due to the symmetry of the source-detector system there are only 2JM independent 

equations. Here the unknowns are ( )kj leσ , with k=1,2,…,2J, j=1,2,…,2J and l=1,2,…,E. As a typical tomographic 
problem there are more unknowns than equations. 

The radiation intensities at mj=2M+1 are considered available, corresponding to the exit measured intensities. 
An alternative approach for the inverse problem involves the logarithmic formulation of the radiative transfer 

problem (Carita Montero et al., 2001) 
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for which all intensities are not allowed to assume zero or negative values. 
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In both cases the q-ART algorithm developed by Carita Montero et al. (2001) may be used for the solution of the 

inverse problem. 
Only the combination of the absorption and scattering coefficients, ( )a leσ  and ( )

jis leσ , respectively, with 

j=1,2,…,2J, and i=1,2,…,2J, given by Eq. (3b), may be recovered using either Eq.(15) or Eq.(16), with the detectors 
dedicated to the measurement of the transmitted radiation only, here denoted , jj nT , with j= 1,2,…,2J and nj=1,2,…,2M. 

 In order to obtain estimates for both the absorption and scattering coefficients we propose the use of a two 
steps approach based upon two different experiments. In the first one (IP1) we acquire only the transmitted radiation 
intensities as denoted before by , jj nT , with j=1,2,…,2J, and nj=1,2,…,2M. In the second experiment (IP2), for each 

source located at a particular position j,nj we acquire all scattered radiation at the exit boundary of the medium, here 
denoted . kk nS with k=1,2,…,2J and nk=1,2,…,2M with k ≠ j and nk ≠ nj. In Fig. 2 both experiments are represented 

schematically. Carita Montero et al. (2003) addressed this problem in more detail, and it will not be repeated here. 
Two different inverse problems are also formulated. In the first one (IP1) we neglect the scattering coefficients 

( )kj leσ  with k ≠ j in Eq.(15) or (16), and obtain  estimates for 
1
( )kk

IP

leσ  using only the experimental data , jj nT . 

In the second inverse problem (IP2) we fix the values for ( )kk leσ  using the estimated values obtained with IP1, 

i.e. 
2 1
( ) ( )kk kk

IP IP

l le eσ σ= , and using only the experimental data , kk nS , we obtain estimates for 
2
( )kj

IP

leσ , with k ≠ j. 

The two steps approach will be considered in a future work. Here we tackle only the estimation of  iiσ  using the 

experimental data , jj nT  . 

 
4. Results and discussion 
 

We present here test case results for the IP1 described in the previous section using the experimental data on the 
transmitted radiation , jj nT . For the solution of the inverse problem we have used the logarithmic formulation given by 

Eq.(16). 
With IP1 we are able to estimate only the combination of the absorption and scattering coefficients, iiσ , given by 

Eq.(3a). In order to provide a compact description of the test cases considered in the present work Eq.(3b) is rewritten 
as 
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where subscript r indicates a region in which the radiative properties deviate from the reference values R
aσ  and R

sijσ , 

and α and β assume different values according to the test performed. 
In all test cases that will be presented here we have considered one or two square shaped defects, i.e. r=1 or r=1 

and 2, with absorption and scattering coefficients that deviate from the reference values R
aσ  and R

sijσ . To allow that a 

significant portion of the radiation goes through the medium, and is then measured by the detectors , jj nT  represented in 

Fig. 2(a), the reference values are taken as R
aσ =2(JM)-1 and R

sijσ =(4JM)-1. The radiation intensity at the incoming 

boundary of each strip , jj nR−∂  in Eq.(2b) is taken as 1in
jφ =  for j=1,2,…,2J and nj=1,2,…,2M. 

In test Case 1A shown in Fig. 3 both the absorption and scattering coefficients in two small square off-center 
regions within domain D are reduced by α1=β1=0.5, and α2=β2=0.5 in Eq.(17). On the left side, Fig.3(a), are represented 

the original values for iiσ  while on the right side, Fig.3(b), are represented the reconstructed values. 
Test Cases 1B and 1C shown in Figs. 4 and 5, respectively, are similar to Test Case 1A except for the values of 

α1=β1, and α2=β2. 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2- Two experiments used in the two steps approach (a) Experiment 1: Transmitted radiation measurement. (b) 

Experiment 2: Scattered radiation measurement. 
 

 
 (a) Original. (b) Reconstructed. 
 
Figure 3- Test Case 1A. α1=β1=0.5, and α2=β2=0.5 . 
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 (a) Original. (b) Reconstructed. 
 
Figure 4- Test Case 1B. α1=β1=4.5, and α2=β2=7.5 . 

 
 (a) Original. (b) Reconstructed. 
 
Figure 5- Test Case 1C. α1=β1=12, and α2=β2=20. 
 

In Test Cases 2A-C two inner square regions are also considered. The corresponding results are presented in 
Figs. 6-8. 

 
 (a) Original. (b) Reconstructed. 
 
Figure 6- Test Case 2A. α1=β1=0, and α2=β2=0. 



  

 
 (a) Original. (b) Reconstructed. 
 
Figure 7- Test Case 2B. α1=β1=6, and α2=β2=10. 

 
 (a) Original. (b) Reconstructed. 
 
Figure 8- Test Case 2C. α1=β1=10.5, and α2=β2=17.5. 
 

From Fig.6 we observe that this was a difficult test case. The algorithm was able to detect the region with lower 
values of the coefficients, but some noisy results are observed in the rest of the domain. 

For the Cases 2B-C, with larger values of α1=β1 and α2=β2 better results are obtained, but one can notice that the 
peak values of the reconstructed parameters are smaller them the original ones. This is probably due to the fact that 
scattering becomes higher and this information is not captured properly because detectors for the scattered radiation are 

not taken into account. Another effect may be due to the fact that in IP1 the coefficients kjσ , with k�j are neglected. 
Further investigation is required. 

In Test Cases 3A-D, whose results are presented in Figs. 9-12, there are also two square regions with different 
radiative properties in comparison to the reference values for domain D, but now we operate in a differente way upon 
those values. In one of them we operate only on the absorption coefficient, i.e. α1 is varied while β1 =1, and in the other 
we operate only on the scattering coefficient, i.e. α2=1 while β2 is varied. In Fig.9(a) the highest peak corresponds to the 
region 1 in which we operate only on the absorption coefficient. 

In all test cases we have considered 12 external sources, i.e. J=6, and for each source there are 20 strips, i.e. M=10. 
In the q-ART algorithm (Carita Montero et al., 2001) used for the solution of the inverse problem we have chosen q� 0 
which corresponds to the maximum entropy criteria yielding the well known MART algorithm used in tomographic 
image reconstruction. 

The domain partition is the most costly step of the computational implementation requiring 2.7 minutes of CPU 
time on a Pentium III-800 MHz processor. The solution of the inverse problem with the q-ART algorithm requires 30 
seconds on the same processor. 

 



 

 
 (a) Original. (b) Reconstructed. 
 
Figure 9- Test Case 3A. α1=5, β1=1, α2=1, β2=0. 

 
 (a) Original. (b) Reconstructed. 

 
Figure 10- Test Case 3B. α1=7.5, β1=1, α2=1, β2=7.5. 
 

 
 (a) Original. (b) Reconstructed. 
 
Figure 11- Test Case 3C. α1=12.5, β1=1, α2=1, β2=12.5. 



  

 
 (a) Original. (b) Reconstructed. 
Figure 12- Test Case 3D. α1=20, β1=1, α2=1, β2=20. 
 
5. Conclusions 

In the present work we combine the strategy developed by Reis and Roberty (1992) with the one developed by 
Carita Montero, Roberty and Silva Neto (2001) for the solution of inverse radiation transfer problems in heterogeneous 
two-dimensional media, including a discontinuous finite element/discrete ordinates approach for the formulation of the 
direct problem. The discrete angular directions are given by a domain partition that is constructed taking into account 
the geometry of the source-detector system for parallel beams of radiation. 

The test case results are encouraging, demonstrating the feasibility of the estimation of a combination of the 
absorbing and scattering coefficients when measured data on the transmitted radiation through the medium is available. 
Future works will be related to sensitivity and resolution analysis, as well as the implementation of the two steps 
approach with transmitted and scattered radiation measured data for the estimation of absorption and scattering 
coefficients. 
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