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Abstract. A continuous mathematical model for describing the dynamical response of a heterogeneous linear-elastic rod, left in a
nonequilibrium state is presented in this work. The problem is represented by a set of two hyperbolic partial differential equations
that, in general, does not admit continuous solutions. In addition, the rod is assumed to be composed by N different materials, giving
rise to N-1 stationary discontinuities in the strain field. The phenomenon is described in the reference configuration in a linear
elasticity context, giving rise to N different propagation speeds. The (generalized) solution presents shock waves, even for cases
involving continuous initial data. Simulations involving boundary conditions (not usual for hyperbolic problems) are considered in
order to provide a way for describing the dynamics of finite rods.
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1. Introduction

Some techniques for studying the mechanical response of materials are based on the propagation of stress waves.
This provides information about the way solids behave when the forces acting on them are no longer in static
equilibrium.

In this paper we shall discuss the dynamical response of a piecewise homogeneous (heterogeneous) elastic-linear
rod left in a nonequilibrium state. In other words, our objective is to obtain the strain, the stress and the velocity fields
starting from a given initial data and subjected (or not) to some boundary condition.

Mathematically, this one-dimensional phenomenon is represented, in the reference configuration, by a linear
hyperbolic system of partial differential equations whose eigenvalues depend on the position. In fact, these eigenvalues
are piecewise constant, since the rod is assumed to be piecewise homogeneous (composed by N different materials).

As it will be shown later, this hyperbolic system will not admit (in general) a solution in the Classical sense. So, it
will be necessary to work with the jump conditions associated with the set of equations in order to deal with
discontinuous functions (generalized solutions of the problem). A composition of these discontinuous functions will
give rise to the complete solution of the problem.

2. Governing and constitutive equations

From Continuum Mechanics (Billington and Tate, 1981) we have that, for the one-dimensional phenomenon under
study here,
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where ρ  is the mass density in the reference configuration (piecewise constant here), v  is the velocity, σ  is the

normal component of the Piola-Kirchhoff tensor and ε  is the strain. The first equation above represents a geometrical
compatibility while, the second one, represents the linear momentum balance in the reference configuration. In both the
equations t  represents the time while X represents the position (in the reference configuration).

The strain field ε  is defined as
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in which x  represents the position in the current configuration (spatial position).
In this work it will be assumed (linear elasticity) that the Piola-Kirchhoff normal stress σ  is a piecewise linear

function of the strain ε . In other words,

1, fori i ic X X Xσ ε += < < (3)

where ic is a positive constant. The mass density ρ will be assumed constant in 1i iX X X +< < .

1constant, fori i iX X Xρ ρ += = < < (4)

3. The associated Riemann problem and its generalized solution

Let us consider now the following initial data problem (named Riemann problem)

0

0

0

0

( , ) ( , ) for

( , ) ( , ) for
L L

R R

v

t X
v

t X
v v X X

v v X X

ε

σ
ρ

ε ε
ε ε

∂ ∂
− =

∂ ∂
∂ ∂

− =
∂ ∂

= <
= >

(5)

in which Lε , Rε ,  Lv  and Rv  are known constants.

The solution of Eq. (5) consists of connecting the left state ( , )L Lvε to the right state ( , )R Rvε  by means of
rarefactions (continuous solutions) and/or shocks (discontinuities satisfying the entropy conditions). Two states are
connected by a rarefaction if, and only if, between these states, the corresponding eigenvalue is an increasing function
of the ratio 0( ) /X X t−  (Smoller, 1983; Lax, 1971 and John, 1974).

The eigenvalues associated to the hyperbolic system are given, in crescent order, by
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So, if we assume that iX → −∞  and that 1iX + → +∞ , the solution of Eq. (5) will depend only on the ratio

0( ) /X X t− and, since the eigenvalues are constant, the solution (generalized) will be discontinuous. In other words, the

left state ( , )L Lvε  will be connected to an intermediate state * *( , )vε by a discontinuity (called 1-shock or back shock)

while the right state ( , )R Rvε will be connected to this intermediate state by another discontinuity (called 2-shock or

front shock). Since 1 20λ λ< <  we have, from the entropy (Keyfitz and Kranzer, 1978; Callen, 1960) conditions that the

shock speed 1s  (back shock speed) is always negative while 2s  (front shock speed) is always positive.

The intermediate state * *( , )vε is obtained from the Rankine-Hugoniot jump conditions given, for this hyperbolic
system, by  (Slattery, 1972)
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where s  denotes the shock speed while the brackets denote the “jump”.
From the equations represented in Eq. (7) we have that
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This set of equations gives rise to the following (generalized) solution
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where
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It is to be noticed that the 1-shock and the 2-shock are contact discontinuities, since 1 1s λ= and 2 2s λ= . So, there is
no entropy generation associated with these shocks (Lax, 1971).

Figure (1) shows the above solution in the plane X t− . Figure (2) shows the strain and the velocity as functions of
the ratio 0( ) /X X t− .

Now, let us suppose that iX → −∞ , 1 0iX X+ =  and 2iX + → ∞ . This case represents an infinite rod composed by
two homogeneous parts.

In such a case the solution will present a stationary shock at the (reference) position 1iX + . The (generalized)

solution of Eq. (5) will depend only on the ratio 0( ) /X X t− too. Nevertheless the 1-shock (left) and the 2-shock (right)
speeds have different absolute values.

Figure 1. The solution of the Riemann problem (Eq. (5)) represented in the plane X t−  for the case in which iX → −∞

and 1iX + → +∞ , It is to be noticed that 1 2s s= .
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Figure 2. The solution of the Riemann problem (Eq. (5)), represented as a function of 0( ) /X X t− , for a case in

which R Lv v=  and R Lε ε> . Since /σ ε  is a constant for X−∞ < < ∞ , the stress behaves like the strain.

Since there exists an stationary shock at 1 0iX X X+= = , we conclude, from the jump conditions across this shock,

that velocity and stress do not jump at this point. So, only the strain ε  jumps across the stationary shock and, since

[ ] 0σ = , we have that (Keyfitz and Kranzer, 1978)
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In this case, the jump conditions give rise to the following set of equations
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and the complete solution is given by
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where
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It is remarkable that Eq. (10) consists of a particular case of Eq. (14), obtained when 1i ic c +=  and 1i iρ ρ += . In this

case there is no stationary jump at 1iX +  and * * *ε ε ε− += =  even for 1( ) / 0iX X t+− = .

Figure (3) presents the solution, obtained with the aid of Eq. (13), in the plane X t− , for a case in which

iX → −∞ , 1 0iX X+ =  and 2iX + → ∞ . The representation in the plane X t−  does not depend on the initial data ( , )L Lvε

and ( , )R Rvε , once the propagation speeds do not depend on the states ( , )vε .

Figure 3. The solution of the Riemann problem (Eq. (5)) represented in the plane X t−  for a case in which iX → −∞ ,

1 0iX X+ =  and 2iX + → ∞ .

4. The associated Riemann problem for cases in which 0 iX X≠  for any i

Now we shall consider the cases in which the interface between two different materials (placed at any position iX )

does not coincide with the jump in the initial data (placed at 0X ). Here, the solution of the Riemann problem will no

longer depend on 0( ) /X X t− . In fact, the solution will depend on 0( ) /X X t− only until a shock (front or back) reaches
a stationary shock. At this point, a new Riemann problem arises, centered at the position of the stationary shock, having
as “initial time” the time in which the shock interaction has been.

So, let us consider the problem defined by Eq. (5) assuming that 0 1i iX X X +< < . Since 0X  is different from any

iX , we have the 1-shock and the 2-shock centered at 0X  and a stationary shock at each iX . The solution will depend

on the ratio 0( ) /X X t−  while there is no shock interaction between shocks. When the 1-shock reaches the stationary

shock at iX X= , the solution changes its behavior. In any case, the intermediate state becomes a new initial data
(which respect to the time in which the shock interaction occurred) giving rise to a new Riemann problem. The solution



of this new Riemann problem has always the same structure of Eq. (13) and, therefore, enable us to solve Eq. (5) for
any piecewise initial data.

In order to illustrate the solution procedure, let us suppose a particular case in which (infinite rod composed by
three different homogeneous parts) 1X → −∞ , 2 0.7X L= − , 0 0X = , 3 0.3X L=  and 4X → ∞  with

1 1 2 2/ 3 /c cρ ρ=  and 3 3 2 2/ 0.3 /c cρ ρ= .

Starting from the initial data
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we have the intermediate state * *( , )vε (called here ( , )L Lvε ) given by Eq. (10). At the point “a” the front shock (with

speed 2 2/c ρ ) reaches the stationary shock placed at 3X . So, a new Riemann problem, centered at “a” arises, having

as its left state 1 1( , )vε and at its right state ( , )R Rvε . For this Riemann problem, the intermediate states * *( , )vε−  and
* *( , )vε+  are given by Eq. (14). Repeating this procedure, we construct Fig. (4) below in which the solution is presented

in the plane X t− .

Figure 4. The solution of the Riemann problem represented in the plane X t−  for 1X → ∞ , 2 0.7X L= − ,

0 0X = , 3 0.3X L=  and 4X → ∞  with 1 1 2 2/ 3 /c cρ ρ=  and 3 3 2 2/ 0.3 /c cρ ρ= .



Table (1) shows the relationship between Eq. (14) and each one of the states presented in Fig. (4).

Table 1. The states 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 and their relation with Eq. (14).

Riemann problem
centered at

LEFT
STATE

INTERMEDIATE
STATE “-“  Eq.(14)

INTERMEDIATE
STATE “+“  Eq.(14)

RIGHT
STATE

a 1 2 3 R
b L 5 4 1
c 4 6 6 2
d 5 8 7 6
e 6 9 10 3
f 7 11 11 9
g 11 12 13 10

Since all the propagation speeds are previously known and constant, it is very easy to determine the time
associated with each shock interaction (a, b, c, d, e, f and g). For instance, the point “a” is reached when

2 20.3 /t L cρ= . The point “e” is reached when 2 21.7 /t L cρ= . The point “c” is reached when 2 2/t L cρ= ...

5. Finite rods – problems involving boundary conditions

The tools presented up to this point are sufficient for describing wave propagation in rods in which an edge is
assumed to be fixed ( 0)v = or free ( 0σ =  and 0)ε = .

Such boundary conditions are automatically satisfied by means of the introduction of artificial states beyond the
actual rod. In other words, for imposing a fixed edge at 1X , it is sufficient to assume the existence of a rod at the left

( 1X X< ), with a state such that * 0v = .  For imposing a fixed edge at 1NX + , it is sufficient to assume the existence of a

rod at the right  ( 1NX X+ > ), with a state such that * 0v = . On the other hand, for imposing a free edge boundary

condition, it is sufficient to consider the artificial rod with a state such that * 0ε = . This can be done in an easy way too.
The choice of the state in the artificial extension of the rod is done based on Eq. (10), once the material of the artificial
extension can be the same of the actual rod.

For instance, let us consider a problem in which 1 0X = , 2 4X L= , 3 12X L= , 0 7X L=  and 1 1 2 2/ 2 /c cρ ρ= .

Two distinct situations will be simulated:
i. A rod fixed at both edges (with 2 1ρ ρ= );

ii. A rod fixed at the left edge, with the right edge free (with 2 1ρ ρ= ).

Table (2) and Fig.(5) present some results associated with the above cases. The solution procedure is based on the
employment of the Eq. (14) after each shock interaction. While Tab. (2) presents quantitative results for specified left
and right states as well as given boundary conditions, Fig. (5) presents results, which do not depend on the initial data or
boundary condition. This is a feature of this kind of hyperbolic system in which the eigenvalues (speeds of propagation)
do not depend on the states.

In Fig. (5) the red dots (at the left) are associated with the center of Riemann problems constructed in order to
satisfy the boundary condition at the left. The blue dots play the same role, at the right. The black dots indicate the
shock interaction within a same material while, the green dots, indicate the interaction between a (front and back) shock
and a stationary one.



Table 2. Some results obtained for cases i and ii, assuming the rod at rest for 0t = . Here 2 2/w v cρ= .

case
Lε Rε 1ε 1w 2ε 2w 3ε 3w 4ε 4w 5ε 5w 6ε 6w

i 0.2 0.2 0.2 0.0 0.1 -0.2 0.4 -0.2 0.0 0.0 0.2 0.0 0.03 0.07
ii 0.2 0.2 0.2 0.0 0.1 -0.2 0.4 -0.2 0.0 0.0 0.0 -0.2 0.03 0.07
i -0.4 -0.4 -0.4 -0.4 -0.2 0.4 -0.8 0.4 0.0 0.0 -0.4 0.0 -0.07 -0.13
ii -0.4 -0.4 -0.4 -0.4 -0.2 0.4 -0.8 0.4 0.0 0.0 0.0 0.4 -0.07 -0.13
i 0.0 0.5 0.25 0.25 0.08 0.17 0.33 0.17 0.17 0.0 0.0 0.0 0.14 -0.06
ii 0.0 0.5 0.25 0.25 0.08 0.17 0.33 0.17 0.17 0.0 0.0 0.0 0.14 -0.06
i 0.0 -0.5 -0.25 -0.25 -0.08 -0.17 -0.33 -0.17 -0.17 0.0 0.0 0.0 -0.14 0.06
ii 0.0 -0.5 -0.25 -0.25 -0.08 -0.17 -0.33 -0.17 -0.17 0.0 0.0 0.0 -0.14 0.06
i 0.8 0.4 0.6 -0.2 0.33 -0.93 1.33 -0.93 -0.13 0.0 0.8 0.0 0.02 0.09
ii 0.4 0.6 0.5 0.1 0.23 -0.33 0.93 -0.33 0.07 0.0 0.0 -0.4 0.12 0.11
ii -0.5 -0.1 -0.3 0.2 -0.18 0.63 -0.73 0.63 0.13 0.0 0.0 0.5 -0.21 -0.21

6. Final Remarks

The tools presented in this paper allow, in a very simple way, the simulation of any initial data problem (even with
boundary conditions) involving linear-elastic rods.

For cases in which the mass density and the ratio stress/strain are not piecewise constant functions (that were not
considered here) the previously presented results are available too, provided these fields be approximated by piecewise
constant ones. This can be done, for instance, choosing, between iX  and 1iX + , the mean value of the mass density and
the mean value of the ratio stress/strain.

So, our original problem defined by
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is replaced by the following one
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Figure 5. The solution (for cases i and ii) represented in the plane X t− , for a finite rod with length 1 2 L .
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