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Abstract. Vortex-induced vibrations (VIV) of slender structural elements (marine cables, pipes and risers) are very important
aspects to be considered in the design stage of many offshore structures, because the fatigue life of risers installed in deep water are
often dominated by VIV effects. Despite the relatively fundamental nature of the problem, a small amount is known about the nature
of the fluid-structure interaction.
The purpose of this paper is to develop a Fourier-Chebyshev collocation spectral method for computing unsteady two-dimensional
viscous incompressible flow past a circular cylinder for moderate Reynolds numbers. The incompressible Navier-Stokes equations
(INSE) are formulated in terms of the primitive variables, velocity and pressure. The incompressible Navier-Stokes equations in
curvilinear coordinates are spectrally discretized and time integrated by a second-order mixed explicit/implicit time integration
scheme. This scheme is a combination of the Crank-Nicolson scheme operating on the diffusive term and Adams-Bashforth scheme
acting on the convective term. The projection method is used to split the solution of the INSE to the solution of two decoupled
problems: the diffusion-convection equation (Burgers equation) to predict an intermediate velocity field and the Poisson equation
for the pressure, it is used to correct the velocity field and satisfy the continuity equation. Finally, the numerical results obtained for
the drag and lift coefficients around the circular cylinder are compared with results  previously published.

Keywords. Vortex-induced vibration, Fourier-Chebyshev spectral method, Incompressible Navier-Stokes equations, Crank-Nicolson
and Adams-Bashforth schemes, Projection method.

1. Introduction

The main objective of this current work is to develop an efficient numerical method of solution for the problem of
unsteady two-dimensional viscous incompressible flow past a circular cylinder for moderate Reynolds numbers. For
this purpose, the numerical simulation of the incompressible viscous Navier-Stokes equations is based upon a Fourier-
Chebyshev collocation spectral method in conjunction with the projection method. The motivation for the use of
collocation spectral methods stems from their high precision, as well as their very low phase errors for the prediction of
time-dependent flow regimes. A time integration of the equations system is performed with a semi-implicit second-
order accurate scheme (Adams-Bashforth and Crank-Nicolson).

One major problem in solving incompressible Navier-Stokes equations comes from the coupling of the pressure
with the velocity, to satisfy the incompressibility condition. Different methods were proposed to overcome this
difficulty. The use of vorticity and streamfunction formulation of the equations avoids this problem. However, although
its application to two-dimensional flows is common, its extension to three-dimensional problems is not straightforward.
Thus, the primitive variable formulation is found to be most easily extended to 3-D flows. For this type of formulation,
Chorin (1968) and Temam (1968) proposed the projection method (or fractional step method) to overcome the lack of
evolution equation for the pressure in this formulation, which is known to be a source of difficulty.

At first, the paper presents the mathematical formulation of the projection method and the transformation of the
incompressible Navier-Stokes equations for a generalized curvilinear coordinates system. A description of the Fourier-
Chebyshev collocation spectral method is given. The numerical method, is presented including: grid generation; time
and spatial discretization of the equations and associated boundary conditions. The numerical results of the simulations
of flow around a circular cylinder for Reynolds numbers of 20, 40 and 60 are compared with previously published
results. Finally, the conclusions of the numerical study of the problem are presented.

2. Mathematical formulation

Two-dimensional viscous incompressible fluid flows are governed by the Navier-Stokes equations. The
dimensionless unsteady Navier-Stokes equations for incompressible flows in Cartesian coordinates may be written in
primitive variables as

VP)V(V.
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0=∇.V in Ω  (2)
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where the unknowns are the vector Tu,vV )(= , which represents the velocity of the flow, and the scalar P , which
represents the pressure field. Here, Re  is the Reynolds number of the flow ( )υ/LU c∞=Re , ∞U is the free-stream
velocity, cL  represents the characteristic length and υ  the kinematic viscosity. Let Ω  be the internal computational
domain with sufficiently smooth boundaries Ω∂ . The initial condition is given as

owV  t == 0 in Ω .  (3)

satisfying Eq. (2), is important that this initial velocity field be divergence free otherwise the continuous problem does
not possess a classical solution. The Eqs. (1) and (2) are completed with an appropriate boundary condition for the
velocity field, such that:

wV = on Ω∂ .  (4)

The Navier-Stokes equations were non-dimensionalized using the following dimensionless variables:
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A major difficulty to solve numerically the incompressible Navier-Stokes equations (INSE) comes from that the
velocity V  and the pressure P  are coupled together by the incompressibility constraint 0=∇.V . To overcome this
difficulty, Chorin (1968) and Temam (1968), proposed the projection method (or fractional step method), which
decouples the velocity and the pressure fields. The projection method has been widely used and has proven to be very
efficient for this type of problem.

These classes of methods permit uncouple the velocity and the pressure in each time step by reducing the solution
of the Navier-Stokes equations to the solution of two successive problems. The first step solves an intermediate
velocity, which does not satisfy the incompressibility condition (the velocity field is not solenoidal), while in the second
step the intermediate velocity is projected onto a divergence-free space. This last step is equivalent to the solution of a
Poisson equation for pressure, which is used to correct the intermediate velocity in order to fulfill the incompressibility
condition.

The projection methods are based on the observation that the left-hand side of Eq. (1) is a Hodge decomposition.
Hence an equivalent projection scheme is given by





 ∇+∇−℘=

∂
∂ V)V(V.

t
V 2

Re
1 .  (5)

where ℘  is the operator which projects a vector field onto the space of divergence-free vector fields with appropriate
boundary conditions.

The projection ℘  can be defined by the solution of a Poisson equation. Specifically, let φ∇+= VW  be the Hodge
decomposition of W , where φ  is a scalar field and V  is divergence-free velocity field that is required to satisfy

wV =∂Ω . Then to determine V  from W  let (Brown et al. (2001))

φ∇−=℘= W(W)V .  (6)

where

W .2 ∇=∇ φ in Ω ,  (7)

w) (Wnn  - . . ˆˆ =∇φ on Ω∂ .  (8)

Following Streett & Macaraeg (1989/90), the semi-discretized version of a semi-implicit projection method can be
written in two steps as follows:
a. The advection-diffusion step solves the intermediate velocity field V~  by
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with the intermediate boundary conditions

)P-P∆t(τVτV . τ nn 12.ˆ.ˆ~ˆ −∇∇+=   on Ω∂ ,     (10)

VnVn .ˆ~.ˆ = on Ω∂ .     (11)

b. The pressure correction step solves the Poisson equation for P  from

t
VP n

∆

~.12  ∇
=∇ + in Ω ,     (12)

with the boundary condition:

0ˆ 1 =∇ +nPn  . on Ω∂ .     (13)

Then the velocities are updated with

11 ~ ++ ∇−= nn PVV . t ∆ in ΩΩ ∂+ .     (14)

In summary, this step can be viewed as the projection of the velocity field onto the divergence-free space.

3. Generalized curvilinear coordinates

The problem under consideration in this paper is the determination of the two-dimensional motion of an unsteady
incompressible flow of a viscous fluid past circular cylinder at moderate Reynolds number, see Fig. (1). The Navier-
Stokes equations for an incompressible fluid of constant density ρ  are used to describe the fluid motion. In order to
solve this problem the Eqs. (1) and (2) are transformed into the generalized curvilinear coordinates ( )ηξ ,  using the
transformation Jacobian ηξηξ xyyxJ −= , then these equations may be written as:
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where cU and cV are contravariant velocities expressed as

uyvxVvxuyU cc
ξξηη −=−=      ,      (17)

Here, ∇ is a gradient operator on the ( )ηξ ,  system defined by
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and
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are the components of the metric tensor associated to the transformation.
The Reynolds number Re  of the flow is based on the diameter of the cylinder D ( cr2 ) and the free-stream velocity

∞U .



Figure 1. Flow configuration past a circular cylinder.

4. Collocation spectral method

The collocation spectral method is characterized by the fact that the solution discretized is forced to satisfy the
governing equations only at collocation points. So, the series expansion for a function ( )ξu  may be approximated as

( ) ( )ξφξ k
N

k
kN uu  ∑=

=0
ˆ ,     (20)

where the ( )ξφk  are the basis functions and the kû  are the expansion coefficients. For a Chebyshev collocation

scheme, the functions ( ) ( ) ( )ξξξφ 1coscos −== kTkk  are the Chebyshev polynomials and the interpolation points are the
called Chebyshev-Gauss-Lobatto points
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The expansion coefficients, kû  may be evaluated by the inverse relation
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where ic  and 1=kc  for 1,..,2,1, −= Nki  and 20 == Ncc .
The derivative of ( )ξNu  at the collocation points iξ  is estimated by the analytical derivative of the Lagrange

polynomials evaluating it at the collocation points iξ ,
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where [ ]ξ 
)1(D  is the Chebyshev collocation derivative matrix. This matrix [ ]ξ 

)1(D  is given by (Canuto et al. (1988))
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The second collocation derivative matrix [ ]ξ 
)2(D  can be computed analytically or by the following relation

[ ] [ ]ξξ   
2)1()2( )(DD = , (Boyd (2001)). A similar procedure is carried out to estimate the Fourier collocation derivative

matrix, by the analytical derivative of the trigonometric polynomials evaluating it at the Fourier collocation points
jη .The expressions for the first and second derivatives are expressed as (Peyret (2002) and Weideman et al.(2001)).
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5. Numerical method

The grid used for our discretization is an O-type orthogonal grid ( )0=β  with cut in the wake behind the cylinder
(see Fig. (2)), which is mapped onto the computational domain with the following transformation,

( ) ( ) )()(,,)(cos)(, ηθξηξηθξηξ sinryrx ==          (27)
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The collocation points along radial direction are the Chebyshev-Gauss-Lobatto points ( iξ ) and the points in angular
direction are the Fourier collocation points ( jη ).

The choice of this grid configuration is suited for the use of the Chebyshev collocation spectral method in the radial
direction and the Fourier collocation spectral method in the angular periodic direction. The governing equations in
generalized curvilinear coordinates are spatially discretized using a Fourier-Chebyshev collocation spectral method. All
the dependent variables Pvu ,,  are expanded in double truncated series of Fourier-Chebyshev polynomials.

The temporal integration is performed with one of the most popular explicit-implicit schemes (or semi-implicit
scheme) of second-order, which is a combination of second-order Adams-Bashforth and Crank-Nicolson schemes. To
avoid severe stability limits, all the viscous terms in the radial direction are treated implicitly and all the advection terms
and viscous terms in the angular direction are treated explicitly.

Now, the steps of the projection method (Eqs. (9), (12) and (14)) are transformed to a orthogonal curvilinear
coordinate system. So, the components of the intermediate velocity field V~ can be written as



( ) ( ) ( )

                                                                 














∂
∂

∂
∂

+







∂
∂





∂
∂

=
∂
∂

+
∂
∂

+
−

η
γ

η

ξ
α

ξ
ηξ

ηξ∆

u
J

u
J

fuVuU
t
uuJ

ncnc
n ~

,
Re
1~

    (30)

( ) ( ) ( )

                                                               














∂
∂

∂
∂

+







∂
∂





∂
∂

=
∂
∂

+
∂
∂

+
−

η
γ

η

ξ
α

ξ
ηξ

ηξ∆

v
J

v
J

fvVvU
t
vvJ

ncnc
n ~

,
Re
1~

    (31)

The Poisson equation for pressure is given by:
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The velocity components are determined by following expressions:
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where the function ( )ηξ ,f  is a filter function that will be defined in the following section.

Figure 2. 2D Computational grid.

The procedure used to impose the boundary conditions on the outer computational boundary and the cylinder
surface is a method devised by Mittal (1995). Due to the geometry of problem, the Fourier collocation spectral method
enforces the periodicity of all variables in the azimuthal direction. Appropriate inflow and outflow boundary conditions
are applied on different parts of the computational boundary. So, following Mittal (1995), a mixed boundary condition
is used at the inflow boundary, which will smooth out the discontinuity in the vicinity of the inflow-outflow junction
and will avoid the Gibbs phenomenon. Then, the inflow boundary for the intermediate velocity field is given by
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where oξ is the extreme collocation point (outer radius), inΩ∂ is the inflow part of the outer boundary, potV  is the

potential velocity field and inV  is the Dirichlet part of the inflow boundary condition, which is defined as
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where n̂  and τ̂  are unit normal and tangent vectors to the boundary inΩ∂ . A buffer domain technique (Streett &
Macaraeg (1989/90)) is implemented on a single domain. This technique recognizes the fact that the source of possible
reflections from the outflow boundary is in the elliptic nature of the Navier-Stokes equations arising from the viscous
terms and the pressure field. The idea is remove this ellipticity at the outflow boundary. Then, the first source of
ellipticity; the normal viscous terms are smoothly reduced to zero at the outer boundary multiplying by a filter function

( )ηξ ,f . Similarly, the ability of the pressure field to carry signals back into the domain from the outer boundary is
attenuated to zero at outflow by multiplying the source term of the pressure Poisson equation by the filter function. In
the present simulations, the filter function is expressed as
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where ( ) oc rrr ≤≤ ξ  and πη ≤≤0 . The above function is reflected about the line of angle of attack to get its
representation in the other half of the domain. The shape and smoothness of the filter function and the extent of the
filtered and parabolized regions may be controlled by the parameters 1α , 1β , and 2β , (Mittal (1995)).

Outside the wake region, the diffusive effects are negligible and the flow is convective in nature. Thus, flow at the
entire outflow boundary can be treated as being purely convective in the direction normal to the boundary and
convective boundary conditions may be used. These boundary conditions can be obtained of the advection diffusion
equations, Eqs. (31) and (32), since 0=f  in that region.

The boundary condition for the intermediate tangential velocity component on the cylinder is given by

( )τ∆τ ˆ.2ˆ.~ 1−∇−∇= nn PPtV on iΩ∂     (37)

The Eqs. (30), (31), and (32) are solved by using a complete diagonalization of the operators in both directions,
(Chen et al. (2000)). The computation of eigenvalues, eigenvectors and the inversion of the corresponding matrices are
done once in a preprocessing step before starting the time integration. Thus, at each time step, the solution is obtained
from simple matrices products.

Finally, some characteristic coefficients of flow around a circular cylinder are defined;
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where ρ is the density of the fluid, oP  is the nondimensional front stagnation-point pressure, LC  is the lift coefficient,

DC is the drag coefficient and PC  is the pressure coefficient. tS  is the Strouhal number that is the nondimensional
frequency of vortex shedding and sf  is the vortex shedding frequency. The subscripts P  and V  respectively represent
the contributions of the pressure and viscous forces. wP  is the nondimensional wall pressure and wω  is the
nondimensional wall vorticity defined as ∞= Urcw / ωω .

6. Numerical results

The numerical results were obtained by simulating the flow around a circular cylinder of a unit diameter where the
outer boundary of computational domain is set at 20 cylinder diameters. The size of the O-grid generated is 83x82 and
the potential flow is specified as the initial condition for all Reynolds numbers simulated.



Table (1) shows the comparison of the some results obtained for Reynolds numbers of 20 and 40 with numerical
and experimental results of others authors. The results obtained by the present method are in fair agreement with the
numerical results of Braza et al. (1986) and the experimental results of Coutanceau and Bouard (1977).

Table 1. Comparison of numerical and experimental results for Reynolds numbers of  20 and 40.

Author(s) Flow quantity Re = 20 Re = 40
Takami &
Keller (1969)

L/D
sθ

DC

0.935
43.65o

2.02

2.325
53.55o

1.536
Dennis &
Chang (1970)

L/D
sθ

DC

0.940
43.70o

2.05

2.345
53.80o

1.522
Taneda (1956) (Exp.) L/D

sθ
-
-

2.1
53.0o

Tritton (1959) (Exp.) DC 2.02 1.58
Braza et al (1986) L/D

sθ

DC

0.960
43.60o

2.18

2.150
54.50o

1.60
Coutanceau &
Bouard (1977)

L/D
a/D ; b/D

sθ

0.930
0.33 ; 0.47

44.80o

2.130
0.76 ; 0.59

53.50o

Present method L/D
a/D ; b/D

sθ

DC

0.970
0.36 ; 0.44

42.59o

2.17

2.230
0.75 ; 0.60

52.42o

1.63
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Figure 3. (a)Wall vorticity distribution for Reynolds numbers of 20, 40 and 60, (b) Pressure coefficient distribution on
the cylinder for Reynolds numbers of 20 and 40.

In the Fig. (3a) the wall vorticity distribution is shown for Reynolds numbers of 20, 40 and 60 and compared with
the numerical results of Braza et al. (1986) and Fornberg (1980). This comparison is found to be satisfactory for
Reynolds numbers 20 and 40, but for the Reynolds number of 60, the distribution of the wall vorticity presents small
discrepancies in comparison with those presented by Braza et al. (1986). Figure (3b) shows the distribution of the wall
pressure coefficient compared with the numerical results of Braza et al. (1986) and the experimental results of Grove et
al. (1964) for Reynolds numbers of 20 and 40. The calculation of the wall pressure coefficient by the present method
agrees well with the experimental and numerical results up to ≈θ 112.5o after of this value our results one again present
small discrepancies from the experimental and numerical results of the authors.

The time variation of the lift and drag coefficients for Reynolds numbers of 20, 40, 60 and 80 are shown in Figs.
(4a), (4b), (4c) and (4d). For Reynolds numbers of 20 and 40, the lift coefficients are constant and equal to zero and the



drag coefficients reach constant values at very early time. The corresponding values of the drag coefficients for these
Reynolds numbers are 2.17 and 1.63. For Reynolds numbers of 60 and 80, oscillations appear for both the lift and drag
coefficients. These oscillations are due the alternating shedding of the vortices, which are convected and diffused away
from cylinder, forming the well-known Kármán vortex street. The frequency of the oscillations of the lift coefficient in
terms of the Strouhal number is found to be 0.15 for Re = 60 and 0.17 for Re = 80. These results are usually bigger than
the experimental Strouhal numbers values reported by Tritton (1959), (0.137 for Re = 60 and 0.156 for Re = 80)
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Figure 4. Time variation of the lift and drag coefficients: (a) Re = 20, (b) Re = 40, (c) Re = 60, Re = 80.

Figures (5a), (5b) and (5c) show the streamlines around a circular cylinder for Reynolds numbers of 40, 60 and 80.
In the Fig. (5a) can be noted the twin-vortices appear in the rear of cylinder at Reynolds number of 40. In the Figs. (5b)
and (5c) can be observed the well-known Kármán vortex paths for numbers Reynolds of 60 and 80.
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Figure 5. Streamlines around a circular cylinder: (a) Re = 40, (b) Re = 60, (c) Re = 80.



7. Conclusions

The projection method combined with the Fourier-Chebyshev collocation spectral method associated with a second
order semi-implicit time scheme and appropriate boundary conditions, has shown to be a stable scheme and able to
represent the physics of the problem of flow around a circular cylinder for moderate Reynolds numbers.

The numerical results show a very fair agreement with the numerical and experimental results previously published,
especially for Reynolds numbers of 20 and 40. Small discrepancies were observed for Reynolds numbers of 60 and 80
after the starting of vortex shedding. One possible reason for these discrepancies could be the filtering process, which is
applied to reduce the reflections into the domain from the outflow boundary. The determination of the optimum filter
function is now under investigation.
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