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Abstract. In the case of an incompressible and elastic material, all universal deformations with two distinct constant stretches are 
known. In fact, Kafadar has shown that the strain field necessarily possesses a constant eigenvector and under a smoothness 
assumption he has shown that there is no new solution for this problem. In this paper we show, based on a new approach for this 
problem, that in fact the direction of such constant eigenvector can be explicitly determined from the field V, rendering unnecessary 
such strong smoothness hypothesis. In contrast with Kafadar’s approach, the geometry of the problem sets the stage and renders 
easy all of its analytical aspect. 
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1. Introduction 
 
 In this work we start by considering a restricted kinematical problem of determining the class of all 
deformation fields with constant strain invariants. If we require that these deformations are to be such that, for a 
constitutive class of bodies, equilibrium is to be achieved in the absence of body forces, then the set of possible 
deformations will generally be further limited. A deformation in this set is called universal. 
 For an isotropic, incompressible, elastic body, all possible deformations with constant stretches λ1 = λ2 ≠ λ3 are 
known. The problem of determining all universal solutions with three distinct constant stretches is, as far as we know, 
open. Thus it is natural to guess that the purely kinematical problem for two distinct constant principal stretches could 
be also solved. 
 Let be given a smooth field of unit vectors e in a 3-dimensional Euclidean space and let S = I + λe ⊗ e be a 
field of symmetric tensors with exactly two distinct eigenvalues: 1 and 1 + λ. If we want to find a field W of skew 
tensors such that S + W is a gradient, a classical problem in Linear Elasticity, curl curl e ⊗ e = 0 is the necessary and 
sufficient condition for the existence of W. Now if we want to find a field of rotations R such that RS is a gradient (the 
compatibility problem for finite strains), then: 
 
(I) If curl e • e = 0, then curl curl e ⊗ e = 0 is the necessary and sufficient condition for the existence of R. 
 
(II) If curl e • e is constant and if RS is a gradient for some field R, then curl e • e = 0. 
 
(III) If RS is a gradient and if S possesses a constant eigenvector, then curl e • e = 0. 
 
 Thus these results, recently proved, remind us of the well known facts for universal solutions in the 
incompressible case: a deformation with two distinct constant principal stretches for which the field e is not normal to a 
family of surfaces (curl e • e ≠ 0, e is the eigenvector corresponding to the eigenvalue of multiplicity one), if any, has to 
be complicated. 
 Let's recall what is known for universal solutions for incompressible elastic bodies. Observe that if F = VR is 
the polar decomposition of the gradient of a deformation, F−1 = RTV−1 is the gradient of the inverse deformation and the 
classical problem (Ericksen's problem) of finding all universal deformations has been approached expressing all fields 
in the deformed configuration. This observation suffices to translate our results in a familiar setting. We want to know if 
the well known universal solutions with constant stretches are the only ones in this class. 
 Kafadar (1972) considered a field U with three constant stretches and supposed that F = RU was a deformation 
gradient for an universal solution. He proved: 
 
(K-I) If U possesses a Taylor series expansion and at least one constant eigenvector, then there exists no new solutions 
to Ericksen's problem. 
 
(K-II) If U possesses at least two equal eigenvalues, then U has at least one constant eigenvector. 
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 Thus, for two distinct eigenvalues, all universal solutions by (K-II) and (K-I) are known. Our result (III) shows 
that in fact curl e • e = 0, and hence this universal solution belongs to the special class (I) of deformations with two 
distinct constant stretches of our purelly kinematical problem. In a naive way, (I) shows that infinitesimal and finite 
compatibility are the same whenever curl e • e = 0. 
 The proof of (I), (II) and (III) is quite simple through the approach we have choose to deal with these 
questions. A hint for the dual role of curl curl e ⊗ e = 0 can be seen in the following naive computation. Let's assume Fλ 
= Rλ (I + λ e ⊗ e) a smooth family of gradients stemming from a fixed field e. The derivative F' of Fλ with respect to λ 
at λ = 0 gives: 
 

F' = R' + R e ⊗ e. 
 
Moreover, because at λ = 0 the corresponding factor Rλ is constant, let's assume R = I. Hence R' = W is skew and 
 

F' = W + e ⊗ e, 
 
which implies curl curl e ⊗ e = 0. 
 The content of this note is as follow. First we fix notations, which are all standard. We use some elementary 
facts on differential forms to deal with the compatibility issue. Then we show that if F = RU the gradient of a 
deformation with constant stretches and U possesses a constant eigenvector, then F = RoG for Ro constant and G the 
gradient of a plane deformation with constant transverse stretch. Thus we obtain (K-I) under less restricted hypothesis. 
 
 
2. Notation 
 
 Let E be the euclidean 3-dimensional space, with translation space V . We denote by I the identity of Lin(V) , 
the set of linear transformations from V  into V  . An orthogonal element Q of Lin(V) is a rotation if det Q = 1. We use 
AT to indicate the transposition of A. 
 As our analysis is of local character, a deformation f is a smooth map from E into E such that its gradient F 
satisfies det F > 0. By the polar decomposition theorem, F = RU = VR, where R is the rotation and U, V are symmetric 
and positive. 
 We choose a fixed orthonormal frame in E . If f is a deformation with constant stretches, U = QTDQ with D 
diagonal. Hence, absorbing the QT factor in the rotation term of the polar decomposition, F can be written as 
 
 F = RDQ.  (1) 
 

 As F is a gradient, its matrix has elements Fij = fi,j , i.e., Fij = 
j

i

x
f

∂
∂ . For the components fi of the deformation f, 

its differential dfi is dfi = fi,j dxj , where we have used Einstein's convention. Moreover the coordinates of points in E are 
written (x1, x2, x3) or, if convenient, also (x, y, z); also if dX denotes the column vector of forms (dx, dy, dz), we have 

FdX = df as a neat way to recall that dfi = 
j

i

x
f

∂
∂ dxj . 

 Let A be a matrix whose elements Aij = Aij(x, y, z) are real valued functions defined on E . We denote by dA 
the matrix with elements (dA)ij corresponding to the differential of Aij: 
 

(dA)ij = d(Aij) = 
m

ij

x
A
∂

∂
dxm = Aij,mdxm. 

 
From (1) it follows that 
 
 dF = dRDQ + RDdQ,  (2) 
 
or 
 

RTdF = RTdRDQ + DdQ, 
 
and 
 
 RTdFdX = RTdRDQdX + DdQdX.  (3) 
 



 We recall that ddf = 0 implies dFdX = 0. On the other hand, if dAdX = 0 for a matrix-valued function A on E , 
then the column of two forms dAijdxj is zero. Thus d(Aijdxj) = 0 and being Aijdxj closed, it is exact: there exists f : E → 
E  such that dfi = Aijdxj and A is the gradient F of a deformation f if det A > 0. 
 
 
3. The compatibility problem 
 
 If R is a field of rotations, RTR = I and dRTR + RTdR = 0 shows that the matrix of 1-forms Ω = RTdR is skew. 
But dΩ = dRTdR = dRTRRTdR = − Ω ∧ Ω. In fact, if 
 

Ω =  
















−−
−

0CB
C0A
BA0

 
then formally multiplying Ω by Ω and taking care of the skew symmetry of the product of two forms, we see that dΩ = 
− Ω ∧ Ω is equivalent to 
 
 dA = B ∧ C,    dB = C ∧ A,    and    dC = A ∧ B.  (4) 
 

Conversely, it can be proved that if Ω, a skew matrix of 1-forms, satisfies the relation dΩ = − Ω ∧ Ω, then 
there exists a field of rotations R such that 
 

Ω = RTdR.  (5)  
 
Moreover if R solves (5) all solutions of (5) are of the form RoR for Ro constant, i.e., Ω determines R up to a constant 
rotation. 
 Now we are ready to pose the compatibility problem we are addressing. Suppose given U, a smooth, symmetric 
tensor field of constant eigenvalues, and with a constant eigenvector, such that F = RU is a gradient. 
 
We call such U a compatible field constant stretches. 
 
 We write F as F = RDQ and choose a frame for which  
 

Q = , 
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100
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where α = α(x, y, z). Thus the third axis corresponds to the fixed eigenvector. We assume λ, β, 1 being the three 
distinct constant stretches of U, without loss of generality. Hence, by calling Ω = RTdR, 
 
 ΩDQdX + DdQdX = 0,  (6) 
 
holds and if we call q1 = cosα dx + sinα dy, q2 = − sinα dx + cosα dy, q3 = dz and if we express the 1-forms A, B and 
C for Ω in the basis {q1, q2, q3} writing for instance A = A1q1 + A2q2 + A3q3, then (6) is equivalent to  
 
 βA ∧ q2 + B ∧ q3 +λ dq1 = 0  
 
 −λA ∧ q1 + C ∧ q3 +βdq2 = 0  (7) 
 
 −λB ∧ q1 − βC ∧ q2 = 0. 
 
 We find then the components of A, B and C by multiplying each equation of (7) by q1, q2, q3 obtaining: 
 

B3 = C3 = 0 ,           λB2 − βC1 = 0 , 
 
from (7)3 . 
 



 Observe now that a simple computation shows dq1 ∧ q2 = dq2 ∧ q1 = 0 and dq1 ∧ q1 = dq2 ∧ q2 = − α,z dxdydz 

= − dxdydz
z∂

∂α . As q1 ∧ q2 ∧ q3 = dxdydz, (7)1 and (7)2 imply 

 
B1 = 0,    C2 = 0,    −βA3 + B2 − λα,z = 0 ,    −λA3 − C1 − βα,z = 0 . 

 
 
As dB = CA and dC = AB it follows that  
 
 B2dq2 ∧ q2 = − C1 A3 q1 ∧ q2 ∧ q3 , 
  (8) 
 C1dq1 ∧ q1 = − A3 B2 q1 ∧ q2 ∧ q3 ; 
 
or 
 B2α,z = C1 A3    and    C1α,z = A3 B2. 
 
Hence B2

2 α,z = C1
2 α,z and C1

2 α,z = C1
2 α,z follows from λB2 − βC1 = 0. Thus α,z = 0 or C1 = 0. But if C1 = 0, 

B2 = 0 follows and − βA3 − λα,z = 0 and − λA3 − βα,z = 0 imply α,z = 0. 
( 2/ λβ )

On the other hand, α,z = 0 implies A3 = B2 = C1 = 0. 
Thus, under our hypothesis, if F = RU is a gradient, the field Q giving the attitude of the eigenvectors of U has 

α as a function α = α(x, y) and the corresponding Ω reduces to  
 

Ω = , 















−
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with A = A1dx + A2dy. As dA = 0 both A1 and A2 are independent of z and we can choose the field R as corresponding 
to a rotation of θ(x, y) along the z axis. 
 Finally observe that we could have assumed β = 1 without change in the conclusions. 
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