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Abstract. Conventional materials undergo lateral contraction when stretched and lateral expansion when compressed, a material 
behavior which is not acceptable for special engineering applications. Bulletproof materials, for instance, require an increase in 
density, which results in a higher resistance to the damage caused by bullet penetration. In order to achieve it, the ideal material 
has to undergo a lateral contraction when under compression. A behavior that is only possible with a negative Poisson ratio. 
Cellular materials, e.g. honeycombs and foams, are suitable materials for this type of application as it is possible to obtain the 
negative Poisson ratio effect by altering their microstructure. This paper takes into consideration the micro mechanics of 
honeycombs and how their morphology affects the composite overall mechanical properties. The negative Poisson ratio effect is 
mainly controlled by the honeycomb morphology, but the wall contribution has to be superposed to the morphological effects. This 
new composite can be used as core materials for sandwich structures with low impact resistance increase.  
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1. Introduction 
 

Two high-strength skins bonded to a thick core often compose the typical sandwich panel. The skins carry most of 
the bending, twisting and in-plane loadings. On the other hand, the core material separates and stabilizes the skins in 
other to reach the desired panel bending stiffness and loading-bearing capacity (Lee and Tostsis, 2000). As mentioned 
by Vaidya et all (2001) current generation of sandwich structures primarily use foam, balsa and honeycomb as core 
materials, as they exhibit lightweight advantages and good damage resistance. According to Kim and Christensen 
(2000) from the large variety of core materials used the most popular is the hexagonal honeycomb. This core has a two-
dimensional hexagonal pattern made of thin-walled structures in one plane. Their good structural efficiency is due to the 
direct connection between the face panels and the honeycombs. Both, laminate and core, materials must be analyzed 
considering their behavior under loading and unloading conditions. Laminates, special polymeric matrix composites 
exhibit a near linear elastic behavior. Guo and Gibson (1999), however, pointed out that most of core materials, also 
called cellular materials by some authors; under uniaxial compressive stress have an elastic-plastic behavior. The walls 
suffer an elastic bending followed by buckling or by plastic yielding. As the deformation is further increased, cell 
collapse progresses at nearly constant loading, resulting in a stress plateau, until all cells have collapsed. After the 
collapse of the entire number of cells there is a sharp increase on stress due to the contact among the collapsed walls. 
The same pattern was observed by Papka and Kyriakides (1994) during their experiments with aluminum honeycombs 
under uniaxial compression. They stated that although the honeycomb performance was highly non-linear the same 
pattern was noticed for honeycombs with different relative densities. This is an indication that honeycomb morphology, 
more specifically the cell geometry, plays a major role into the overall mechanical behavior.  

Several previous studies have examined the hexagonal honeycomb behavior not only under uniaxial compression 
(Gibson and Ashby, 1997; Kim and Christensen, 2000; Vaidya et all, 2001) but also shear (Zhang and Ashby, 1992), 
bending (Daniel and Abot, 2000), and biaxial loading (Gibson and Ashby, 1997). The results are, most of time, 
acceptable. However, when double curvature is required hexagonal honeycombs do not perform so well due to Poisson 
effects when the core is forced to curve. According to Zenkert (1997), this problem can be overcome using another cell 
shape. As mentioned by Gibson and Ashby (1997), Poisson ratios for honeycombs are strongly dependent on cell 
geometry. A core with negative Poisson ratio can be very useful; as the honeycomb is curved in one direction the 
secondary curvature in the other direction has the same signal. Hence, a core can be manufactured to fit to a specific 
double curvature.  Moreover, as mentioned by Bitzer (1997), in the case of a positive in-plane Poisson ratio, as for 
hexagonal shape honeycombs, the bending will be anticlastic making the sheet difficult to fit the shape a doubly curved 
mould. However, if the Poisson ratio is negative, the reaction to single bending moment will be synclastic (same sign on 
Kx and Ky) and the core sheet will be easier to handle.  

Lakes (1991) and Milton (1992) demonstrate mathematically the possibility of existence of core materials with 
negative Poisson ratio. According to them, this phenomenon is mainly due to microstructure geometrical configurations. 
They called these special microstructures as re-entrant arrays. Since then, many other researchers (Gibson and Ashby, 
1997; Choi and Lakes, 1995; Lubarda and Mayers, 1999; Yang et all, 2003; Chaves et all, 2003) have been working on 
materials with negative Poisson ratio. Our objectives are not only to present a new design for honeycombs but also to 
derive the mathematical formulation for computing their elastic moduli. This special type of honeycomb can be applied 
for double curvature situations due to their in-plane Poisson ratio close to –1. Furthermore, the two in-plane Poisson 
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ratios, minor and major, are also close to each other and equilibrated. As the result of this feature curvature in two 
directions is easily obtained. 
  
2. The butterfly honeycomb and Its mathematical formulation 
 

The new honeycomb design is a variation of the model presented by Milton (1991) called re-entrant cell. In the 
present model, the stress concentration on the corners is minimized by avoiding sharp connections between the walls. 
Once a curvature radius is introduced on the corners a smooth transition is established. The strategy employed to 
develop the new set of equations for stiffness estimation is based on the unit cell approach. Once the unit cell is isolated, 
a set of unitary loadings (uniaxial compression, shear loading, and biaxial compression in and out-of plane) are applied. 
Each effective/average stiffness modulus is computed by using the equilibrium equations. This is essentially the 
methodology employed by   Gibson and Ashby (1997) in their work with good results. However, changes in some 
geometrical parameters can result in large variations into the effective elastic moduli (Gibiansky and Torquato, 1995). 
This phenomenon is common to all honeycomb configurations including the new re-entrant honeycomb. 

Figure 1 shows the main dimensions considered into the butterfly honeycomb design. Notice that the vertical walls 
have thickness twice as much as the others. This is due to the fact that, according to Vinson (1999), it is a common 
feature into commercial honeycombs. According to Masters and Evans (1996), in all re-entrant honeycombs the angle θ 
must be negative. Furthermore, a comparison between regular hexagonal and re-entrant honeycombs, it is only possible 
when the wall length (l) is half of the perpendicular wall length (h), in other words, for the re-entrant honeycomb h=2l. 
Notice that regular hexagonal honeycombs have equal wall length (h=l) and they are more frequently classified 
following their cell size (c). Therefore, the comparison only can be made by considering honeycombs with the same or 
at least close relative densities. Another important issue is the stress concentration factor. Most commercial 
honeycombs have some smoothing transition on the corners. In our case, this transition is made by employing two 
curvature radiuses. Following Chaves et all. (2003), the external radius (R2) is made twice the internal radius (R1) not 
only to create a smooth transition but also due to manufacturing limitations. 

 

 
Figure 1: Butterfly honeycomb main geometrical parameters 

The new honeycomb design allows an in-plane behavior between a quasi-isotropic condition and a complete 
dissimilar property on X1 and X2 directions. Moreover, the in-plane Poisson ratio will be negative. Notice that the out-
of-plane Poisson ratio is still positive as the honeycomb design is essential two dimensional. The mathematical 
formulation to estimate the elastic moduli can be defined as: 

Effective Young’s modulus parallel to X1: 
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the  Es is the wall Young’s modulus, the wall thickness is represented by t, and θ and R1 are defined in figure 1. 
Effective Young’s modulus parallel to X2: 
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From the theory of elasticity (Green and Zerna, 1968) the major Poisson ratio as the negative ratio between the 

normal stresses on X2 and X1 directions, respectively. 
For honeycombs the major Poisson ratio definition leads to: 
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Silva et all. (1995) pointed out that for honeycombs the reciprocity theorem must be valid. Mathematically this 
expression is given by: 
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This brings out the expression: 
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The effective in-plane shear modulus  is defined as: 
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For the out-of-plane mechanical properties, the following equations must hold. The effective out-of-plane Young’s 
modulus is defined as: 
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The effective Poisson ratios are defined by Gibson & Ashby (1997) as: 
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The expressions for the effective out-of-plane shear are modifications of the ones proposed by Kelsey et all (1958). The 
effective shear modulus for the 1-3 plane is defined as follows: 
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Although there is an expression derived by Grediac (1993), for the effective shear modulus for the 2-3 plane is better to 
use the upper and lower bounds proposed by Kelsey et all (1958) The reason is that Grediac’s equation is an 
approximation of Kelsey’s formulation.  The modified Kelsey’s lower bound derived by Avila et all. (2003) is given by: 
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The upper bound is given by: 
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where Gs is the wall shear modulus. 

The mathematical formulation presented is a guide to the sandwich composite engineering designers. The main 
objective is to provide the homogenized or effective stiffness, with these properties on hand the designer can choose the 
some important geometrical parameters, e.g. transverse area, as a function of bending loads, etc. However, there are a 
great number of possible configurations. To be able to understand how a specific configuration can affects the overall 
stiffness a morphological study must be performed. 

  
3. Morphology changes versus stiffness variations 

 
Lakes (1991) stated that for re-entrant honeycombs not only the negative angle θ must be considered but also the 

ratio between the lengths α and β. As it can be observed on equations 1 through 11 the elastic moduli are mainly 
dependent on a set of factors, i.e. the wall material properties, the θ angle, the wall thickness (t) and the α/β ratio.  For 
each specific set of parameters there is a unique re-entrant honeycomb. The morphology changes ranges from a near 
rectangular shape to a close to a butterfly configuration.  To give an idea how changes on θ and α/β parameters affects 
the honeycomb morphology Tab. 1 was created.   
 

            
Table 1: Morphological changes on honeycombs     

The empty spaces on Table 1 mean that there is not possible to make honeycombs with these angles and correspondent 
ratio α/β. There is no doubt that changes on these parameters will affect the honeycomb morphology, but how does it 



 
affect the elastic moduli? To answer this question a set of numerical simulations were performed. The t/β ratio are kept 
constant and equals to 0.2. By doing the thin wall condition can be assumed. Even though the honeycomb is under three 
effects acting at same time, i.e. bending, stretching and hinging, the major contribution is given by the bending effect 
due to the thin wall condition assumed [8]. Therefore, for this case only bending will be considered. Moreover, the α/β 
ratio will vary from 1 to 3, and the butterfly honeycomb walls will be made of a quasi-isotropic cross-ply fiber 
glass/epoxy laminate.  The mechanical properties are listed on Table 2.  
 

Material E (GPa) G (GPa) ν 
Fiber glass/epoxy 36.0 9.0 0.25 

Table 2: fiber glass/epoxy mechanical properties 
 
Figure 2 gives us a hint of how is the Young’s modulus (E1) behavior as a function of the θ angle and the α/β ratio. For 
a constant θ, the maximum reduction on stiffness as a function of changes on α/β ratio is around 76%, while for the 
reverse the situation, a fixed α/β and changing on  θ, the maximum stiffness reduction is close to two orders of 
magnitude. For small angles the honeycomb morphology is close to a rectangular shape, which leads a stiffer 
microstructure, at least for the X1 direction loadings. Once the θ angle gets negatively larger the micro structural 
stiffness is reduced due to the rotations on the walls that were parallel or near parallel to the X1 direction. This 
phenomenon is potentially worst with increase of α/β ratio. A large difference between α and β lengths makes easy to 
bend these rotated walls, as they are connected in a geometric configuration, near to butterfly shape. It is possible to 
conclude that the Young’s modulus E1 is inversely proportional to the α/β ratio. Moreover, as the θ angle gets more 
negative, there is also a decrease on stiffness (E1). Besides, the leading parameter for the E1 modulus seems to be the θ 
angle. The E2 modulus behavior is shown in figure 3. Notice that for E2 the two in-plane Poisson ratios must also be 
considered. That is why the E2 maximum value is amount on order of magnitude smaller than E1. 

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1 1.5 2 2.5 3

Rate α /βα /βα /βα /β

Y
o

u
n

g
's

 M
o

d
u

lu
s 

E
1 

[P
a]

θ=−5
θ=−15
θ=−30
θ=−45
θ=−60

 
Figure 2: Young’s modulus (E1) variation  
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Figure 3: Young’s modulus (E2) variation 

 



  

When dealing with in-plane Poisson ratio some considerations must be made. For the major Poisson ratio (ν12) as 
the α/β ratio increases, a near asymptotic behavior is observed, as it can be noticed in figure 4. It is interesting to 
recognize that smaller negative angles lead to even more negative ν12. An opposite behavior is perceived for the minor 
Poisson ratio (ν21), as seem in figure 5. The minor Poisson ratio behavior is due to the reciprocity theorem from theory 
of elasticity. Large variations on ν12, close to 69%, are observed special for small angles when the α/β ratio increases. 
The reason is that for these configurations the E1 elastic modulus is high, which leads a small normal deformation on X1 
direction. Notice that stresses are assumed constant. As the major Poisson ratio is defined as the ratio between the 
normal strain at X2 direction (ε2) and the normal strain at X1 direction (ε1), a small ε1 will naturally guides to a large ν12. 
As the α/β ratio increases the E1 elastic modulus decreases at same time that E2 increases, but in different rates. This 
behavior results to near asymptotic behavior for ν12.  For practical applications, however, an equilibrated Poisson ratio, 
i.e. ν12 and ν21 close to each other, seems to be more appropriate, as the normal strains on perpendicular directions will 
be roughly the same. This particular case can be observed when α/β is around two and the θ angle is close to -30 
degrees, in other words, considering this configuration the two in-plane Poisson ratios (ν12 and ν21) will be roughly -1. 
The contraction and/or expansion observed can be attributed to the spring effect generated by the morphological 
changes on honeycomb microstructure. 
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Figure 4: Poisson ratio (ν12) variation                     
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Figure 5: Poisson ratio (ν21) variation 

 
The in-plane shear modulus G12 variation is shown in figure 6. It seems that for this case, the angle variation has 

little effect on G12 variation. In fact, the largest variation on G12, keeping the α/β ratio constant, is around 33%. 
Meanwhile, the in-plane shear modulus variations, considering a constant  θ angle, are close to one order of magnitude. 
This large variation can be due to changes on the transverse section area. A possible conclusion for this behavior is that 
the most important parameter for G12 is the α/β ratio.  However, this analysis will not be completed without the out-of-
plane analysis. According to Vinson (1999), the out-of-plane mechanical properties, i.e. Young’s modulus (E3), shear 



 
moduli (G13 and G32) and Poisson ratios, are crucial for sandwich structures design. As it can be observed at figure 7, 
the out-of-plane Young’s modulus (E3) seems to be strongly affected not only by the θ angle changes, but also by 
variations on the α/β ratio.  When α/β is kept constant and θ varies from -60 to -5 degrees, the maximum stiffness 
reduction observed is close to 73%. On the other hand, drastic changes on α/β ratio for large angles can lead to a non 
feasible honeycomb design. For small angles, close to -5 degrees, changes on α/β lead to near constant values, as the 
angles increase those variations are more significant. This is due to the sine on the equation (6), i.e. for small angles the 
sine approaches to zero and denominator on equation (6) is close to a constant value. 
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Figure 6: In-plane shear modulus (G12) variation 
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Figure 7: Young’s modulus (E3) variation 

 
The G13 variation is shown in figure 8. Considering a constant α/β ratio, changes on θ angle will result in a 

maximum stiffness alteration close to 34%. Meanwhile, when the α/β ratio changes from 1 to 3 the stiffness decreases 
to one quarter of its original value, i.e. a 75 % reduction. It seems that for the out-of-plane modulus (G13) changes on θ 
angles play a secondary role on stiffness definition. The last elastic modulus to be analyzed is the out-of-plane shear 
modulus. The best way to study the G23 modulus is consider its effective value, i.e. mean value between the upper and 
lower bounds.  In figure 9 it can be observed that variations on α/β ratio can lead up to a 25% stiffness changes. 
However, when the θ angle varies from -60 to -5 degrees, for a constant α/β ratio, there is a decrease on stiffness 
around 73%. Once the θ angle increases the projected transverse area also increases leading to a higher G23 as the 
applied stresses are constant. It seems that for G23 the dominant parameter is the θ angle.  



  

5.00E+07

5.50E+08

1.05E+09

1.55E+09

2.05E+09

2.55E+09

3.05E+09

1 1.5 2 2.5 3

Rate α /β α /β α /β α /β

S
h

ea
r M

od
u

lu
s 

G
13

 [P
a]

θ=−5
θ=−15
θ=−30
θ=−45
θ=−60

 
Figure 8: Shear modulus (G13) variation       
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Figure 9: Shear modulus (G23) mean values variation 

 
The Poisson’s ratio out-of-plane are not shown because they have a near constant behavior for the first ones (ν31 

and ν32) the value is close to the wall’s Poisson ratio, i.e. ≈ 0.30, and the last ones (ν13 and ν32) are close to zero. When 
all elastic moduli are studied simultaneously some comments could be made. For in-plane and out-plane conditions the 
best solution is a ratio α/β close to 1. Nevertheless, the in-plane Poisson effect for the α/β ratio close to 1 is complete 
unlike behavior.  In other words, the in-plane contraction or traction in two perpendicular directions will be very 
different in magnitude. For single curvature applications this is not a problem, but for structures with double curvature 
this fact could causes much trouble. Milton (1992) suggests a honeycomb with in-plane Poisson’s ratio close to -1 to 
solve the double curvature problem.  A prototype of the new butterfly honeycomb design and manufactured. Its cell size 
is around 10 mm (≈3/8”), and the t/β and α/β ratios are 0.2 and 2.0, respectively. The walls are made of fiber glass/ 
epoxy  cross-ply laminate. The prototype elastic moduli are shown in Table 3.  

 
 
 
 

 



 
E1[MPa] E2[MPa] E3[MPa] G12[MPa] G13[MPa] G23[MPa] ν12 ν21 ν31=ν32 ν13=ν23 
665.108 665.108 16.627 3.779 1.039 2.079 -1.000 -1.000 0.250 ≅0.000 

Table 3: Butterfly honeycomb effective moduli 
 
According to Kim and Christensen (2000) the relative density is the parameter that allows comparisons among 
honeycombs. Lets consider a regular hexagonal honeycomb, where   θ  is equal to 30 degrees, t/β is made equal to 0.2 
and the α/β ratio is identical to 1, and the prototype shown in figure 10. These honeycombs have similar relative 
densities. Moreover, the elastic constants are the same with the exception of in-plane Poisson ratios that are equal to +1 
for the hexagonal honeycomb and -1 for the butterfly honeycomb. The -1 in-plane Poisson ratios are the key factors that 
allow the strains at perpendicular directions have the same sign and equivalent magnitudes, enabling the double 
curvature construction. 
  

 
Figure 10: New butterfly honeycomb prototype picture 

 
4. Closing Remarks 
 

For re-entrant honeycombs the morphology and stiffness are related. Four different parameters, three geometrical 
and one material, can be identified for these honeycombs, i.e. the θ angle, the α/β and t/β ratios, and the mechanical 
properties of the cells walls. Variations on these parameters have direct effect not only on effective moduli but also on 
honeycomb morphology itself. The t/β defines if the honeycomb has thin or thick walls. In the first case the bending 
effect is predominant, while for second case besides bending, stretching and hinging must be considered as acting at 
same time.   

Variations on θ angle, and the α/β ratio do affect the in-plane Young’s moduli (E1 and E2). As α/β ratio increases 
there is a decrease on stiffness. Moreover, E1 behavior is inversely proportional to the increase of the negative angle. 
The E2 modulus presents an opposite behavior. The major in-plane Poisson ratio (ν12) seems to have an asymptotic 
behavior as the α/β ratio gets larger. Furthermore, smaller angles lead to a more negative major Poisson ratio. Due to 
the reciprocity theorem from the theory of elasticity the minor Poisson ratio (ν21) has the opposite behavior of its 
analogous (ν12).  The in-plane shear modulus (G12) has a near independent behavior of θ angle variation. The major 
variations seems to be due to the α/β changes, as they are more related to the cell walls transverse area.  

The out-of-plain Young’s modulus (E3) seems to be more affected by the θ angle variations than by variations on 
α/β ratio than angle changes. For the out-of-plane shear modulus, two different behaviors are observed. G13 is 
independent of the θ angle variations, while θ variations can lead to significant variations on G23. The main reason for 
this behavior is the transverse area on the 1-3 and 2-3 planes. It is important to mention that an optimum stiffness does 
not mean best performance.  In this case, α/β close to 1 will guide to a near maximum stiffness. However, the Poisson 
effect is unbalanced, which leads to complete different normal strains in the two in-plane perpendicular directions. This 
configuration is mostly like to direct problems for double curvature applications. The new honeycomb design will 
probably fit well to double curvature engineering applications as it has the two in-plain Poisson’s ratios close to -1 
besides good out-of-plane mechanical properties. A series of lab tests on this new honeycomb design is under 
development. 
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