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Abstract. In this contribution, a two-dimensional external conjugated heat transfer problem is studied. The physical problem 
consists of a rectangular block with an internal heat source, which is being cooled by an air stream at its upper surface. Various 
boundary conditions at the surfaces of the block are specified while the coupling between the solid and the fluid occurs at the top 
surface of the block where an unknown temperature distribution is sought. The mathematical model of this problem involves the 
steady non-homogeneous two-dimensional heat transfer equation together with the boundary layer formulation for the fluid flow. 
This model is solved throughout an approximate fashion by analytically solving the heat transfer problem and by employing various 
approximate polynomials for the velocity profile. Quantities of practical interest such as the block and fluid temperature 
distributions and the local and mean wall heat flux are presented with respect to the Reynolds number and the ratio of the fluid to 
the solid thermal conductivities. 
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1. Introduction  
 

In engineering practice, heat transfer from a heated block subjected to convective cooling at its upper surface is the 
model for many applications including electronic equipment cooling, materials processing and heat exchangers. 

A literature survey shows several relevant contributions that employ either analytic or approximate methods of 
solution for this type of problem. Luikov (1974) solved analytically the conjugate problem of forced convection over a 
heated semi-infinite thin flat plate by assuming constant velocities in the momentum boundary layer and a linear 
temperature profile for the thin plate. Karvinen (1978) presented an approximate solution for heat transfer from a finite 
thin plate subjected to forced convection by prescribing an initial estimate for the temperature distribution along the 
surface that allowed for the determination of a finite differences iterative scheme of solution. Rizk, Kleinstreuer and 
Özisik (1992) developed an analytic solution for the heat transfer problem of flow past a rectangular block by assuming 
constant axial and normal velocity components that considerably simplified the thermal boundary layer solution. Pop 
and Ingham (1993) considered forced convection over a one-dimensional finite plate therefore neglecting the axial 
conduction within the plate. Their finite differences numerical solution was based on asymptotic expansions. Vlassov 
(2002) solved a two-dimensional steady state heat conduction problem with multiple sources distributed on a 
rectangular region through the classical integral transform technique. The convective cooling process was represented 
by a convective boundary condition therefore avoiding the solution of the thermal boundary layer equation. 

In this contribution, the physical situation studied by Rizk, Kleinstreuer and Özisik (1992) is revisited with a 
different and more realistic approach to the convection problem. Here, the assumption of constant axial and normal 
velocity components is replaced by the approximate solution of the boundary layer type flow past the block surface by 
means of the integral boundary layer method for the momentum equation as well as for the balancing of heat fluxes 
through the interface between solid and fluid.  

  
2. Mathematical formulation 
 

Steady conjugate heat transfer from a rectangular block with volumetric heat source to a free stream is considered. 
The coupling between the solid and fluid is through the unknown block surface temperature that varies in the axial 
direction. The boundary conditions are taken as constant temperature at the inlet side and either isothermal surface or 
constant wall heat flux at the exit side while the bottom is adiabatic. The mathematical formulation of this conjugated 
conduction-convection heat transfer problem is discussed in this section. 
 
2.1. Conduction inside the block 
 

The steady two-dimensional temperature field θ is governed by the following energy equation in dimensionless 
form  
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subjected to the boundary conditions 
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where various dimensionless groups are defined as 
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In the above parameters, L and 1 are the length and height of the block, respectively, g represents volumetric heat 

generation rate, ψ is the dimensional temperature field within the block, ks and kf represents the thermal conductivity 
for solid and fluid, respectively, and the symbol  ^ denotes dimensional coordinate.  

The boundary condition at the block-fluid interface is given in Section 2.3. 
 
2.2. Forced convection over the block surface 
 

By introducing the following dimensionless variables: 
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the convection problem for laminar, steady, hydrodynamically fully developed flow over the block surface is given in 
dimensionless form as follows  
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where  0 < x < ∞ ,  0 < y < ∞ , and the following dimensionless boundary conditions apply: 
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1)y,x(u →∞→   (4e) 
 

0)y,0x(t ==   (4f) 
 

)x(f)0y,x()0y,x(t ==θ==   (4g) 
 

0)y,x(t →∞→   (4h) 
 



 
Here, U represents the mainstream velocity component, T is the dimensional fluid temperature, α and ν are 

respectively the fluid thermal diffusivity and kinematic viscosity, and the symbol  ^ denotes dimensional coordinate. 
 

2.3. Interfacial conditions  
 
The conduction-convection problem defined in Sections 2.1 and 2.2 are coupled at the solid-fluid interface by the 

requirement of continuity of temperature and heat flux along the block surface. Thus, 
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where a dimensionless function f (x) whose form is yet to be determined in the subsequent analysis was introduced 

in the form 
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The systems defined by Eqs. (1a-e) and Eqs. (4a-h), coupled through Eqs. (5a-b), constitute a conjugate heat 

transfer problem whose solution will be addressed in the following section.  
 
3. Problem solution 
 
3.1 Conduction problem 
 

The steady, two-dimensional, conduction problem defined by Eqs. (1a-e) is solved through the classical integral 
transform technique (Özisik, 1980) as follows: 

The temperature field is expressed in the form of an expansion in terms of eigenfunctions 
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where Xm(x) is the solution of the following  Sturm-Liouville problem, obtained through separation of variables applied 
to the homogeneous version of system (1a-e): 
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The eigenfunctions of the above eigenproblem are found to be 
 
Xm  =  sin (βmx)  (9) 
 
The eigenvalues βm depend on the choice of the boundary condition at x =1, Eq. (1c) or Eq. (1d), and are given 

respectively by 
 
βm  =  mπ  (isothermal wall) , βm  =  mπ  �  π / 2 (insulated wall)  (10a,b) 
 
Equation (7) is now multiplied by the generic eigenfunction  Xj and integrated to yield 
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Recalling the orthogonality property of the eigenfunctions, which is written as: 
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Equation (11) becomes 
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By substituting Eq. (13) into Eq. (7), the following  integral transform pair is obtained: 
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Equation (14b) is the transform of θ(x,y) whereas Eq. (14a) is its inversion. The original problem Eq. (1a) is then 

transformed as follows: Eq. (1a) is multiplied by the eigenfunctions Xm and the resulting expression is integrated which 
yields 
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The first term in the above expression is rewritten in terms of the transform (14b) as 
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Now, Eq. (8a) is multiplied by the temperature θ(x,y) and the resulting expression is integrated yielding  
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The second term of the above expression is rewritten in terms of the transform (14b) as 
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Equation (18) is subtracted from Eq. (16), resulting in 
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where )y(gm   is the transformed heat generation function, defined by 
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The integral in Eq. (19) is evaluated as 
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Clearly, the second and fourth terms on the right hand side of Eq. (21) cancel. Furthermore, by substituting the 

boundary conditions at x = 0 and x = 1, the first and third terms on the right hand side vanish. Thus, 
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The original partial differential equation is therefore transformed into a set of m decoupled ordinary differential 

equations for the transformed temperature )y(mθ . The boundary conditions for system (22) are obtained from 
transformation of Eq. (5a) and Eq. (1e), respectively, as 
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For simplicity in the analysis, heat generation is taken as a constant and therefore 
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The solution of system (22) subjected to Eqs. (23a,b) is 
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Finally, the inversion (14a) is applied to Eq. (25) to furnish an expression for the temperature within the solid: 
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At this point, function f (x) remains unknown and must be determined by matching the solid and fluid solutions at 

the interface. 
 
3.2 Convection problem 
 

Here, an alternative solution to the one addressed by Rizk, Kleinstreuer and Özisik (1992) for the hydrodynamic 
problem is sought. A simple model that allows for approximate results but still retains some insight in the physics of the 
problem is the classical integral method of solution for boundary layer equations for the flat plate situation.  

Thus, following the basic steps in the analysis with this method, Eq. (4b) is integrated with respect to y over the 
boundary layer thickness δH(x) and the velocity component v(x,y) appearing in this equation is eliminated by means of 
the continuity equation, Eq. (4a). As a result, the so-called momentum integral equation is obtained but an additional 
relationship between δH(x) and u(x,y) is needed. At this point, an approximation is introduced in the analysis in the form 
of an assumption regarding the functional form of the velocity profile u(x,y). Such an approximation is chosen to be a 
first, second, third or fourth-degree polynomial, in the form:  
 

u (x, y)  =  a0 (x)  +  a1 (x) y  +  a2 (x) y2  +  a3 (x) y3  +  a4 (x) y4  (27) 
 

Constants a0 to a4 are defined according to the desired polynomial degree and follow the constraints for the physical 
problem. Thus, for a first-degree approximation two conditions are needed and for every additional degree a new 
condition is necessary up to the limiting situation of a fourth-degree polynomial defined by five constraints, as follows  
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The application of the first two conditions given by Eq. (28a) and Eq. (28b) results in a velocity profile in the form 
of a first-degree polynomial, whereas application of Eqs. (28a-c) results in a second-degree polynomial approximation 
and so forth. Table (1) summarizes the resulting polynomial velocity profiles. 

For every different polynomial approximation for u(x,y) the corresponding momentum boundary layer thickness δH 
is needed. This task is accomplished by introducing the chosen polynomial approximation into the momentum integral 
equation and by performing the integration over y to obtain an ordinary differential equation for the determination of δH 
(x). Once this equation is solved, one obtains 
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The constant cvel depends on the degree of the polynomial approximation and is summarized on Tab. (1).  
In a similar fashion, the thermal problem is also solved by the integral method and a polynomial representation for 

the temperature profile within the thermal boundary layer is adopted. Such an approximation is chosen among 
polynomials up to the fourth-degree: 
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Coefficients b above are determined by constraining Eq. (30) to the following constraints: 
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The resulting temperature profiles are also summarized on Tab. (1). 
 
Table 1.  Polynomial approximations and values for constants in Eq. (29) and Eq. (32)  

 
Velocity profile cvel cq Temperature profile 
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 At this point, the temperature profile within the thermal boundary layer depends on f(x) and δT(x), e.g. the 

temperature at the solid-fluid interface and thermal boundary layer thickness, respectively. An expression for the 
determination of f(x) is obtained by matching the solid and fluid heat flux expressions at the interface as follows:  

The derivative of the fluid temperature profile at the interface along y = 0 is  
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where constant  cq  depends on the degree of the polynomial approximation considered as reported on Tab. (1). 
On the other hand, the derivative of the solid temperature profile at the interface yields 
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Recalling the interfacial condition, Eq. (5b), and substituting for Eq. (32) and Eq. (33), an expression for f(x) is 

obtained in the form   
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where Cm is defined as 
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Now, Eq. (34) is multiplied by Xj (x) on both sides and the resulting expression is integrated over x: 
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The thermal boundary layer thickness δT is related to hydrodynamic boundary layer thickness δH through the well-

known expression  
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and  Eq. (36) can be rewritten in the form 
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and  δjm is the Kroenecker delta. 

In order to evaluate the fluid temperature distribution, the integral energy equation would have to be determined 
and a temperature approximation would have to be chosen. At this point, a coupled system for the two unknowns, 
namely )x(∆ and f(x), would be reached. Moreover, this system exhibits an interesting mixed feature as it is represented 
by an ordinary differential equation for )x(∆  and an algebraic equation for f(x). While solutions to this problem are 
feasible through standard mathematical subroutines, such as routine DASPG from the IMSL package, such solutions 
usually have poor convergence behavior due to their mixed nature and a discussion to the related solution strategies can 
be found at Santos (2003).  

At this point, a further hypothesis is adopted. Actually, from the well know thermal boundary layer problem for the 
flat plate geometry, it can be shown that for this specific case, )x(∆  is independent of x and varies only with the Prandtl 
number. A literature review suggests that this conclusion can also be applied to other situations with a reasonably 
degree of accuracy (Lienhard, 2003). Of course, one would expect a strong axial dependency at regions close to the 
leading and trailing edges and also in situations involving blocks with aspect ratio around a unitary value. Keeping in 
mind that the main focus of this work is to predict the thermal behavior of electronic circuit boards, whose aspect ratios 
are usually smaller than 1/8, it would appear that taking )x(∆  to be independent of x is a reasonable assumption. 
Therefore, in the present analysis it is assumed that:  
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Now system (38) can be truncated to a sufficiently high order, N, and the desired coefficients Cm can be determined 

by solving this algebraic problem with the aid of subroutine LSARG, from the IMSL package. Since coefficients Cm are 
identical to the expression for )0(mθ , Eq.  (35), an expression for the interfacial temperature f(x) is obtained in terms of 
the following fast converging series expansion  
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Moreover, the temperature within the block, Eq. (26), and the fluid temperature field for the various polynomial 

orders given in Tab. (1) can also be obtained. Also of interest are the dimensionless local and average heat transfer rates 
at the interface, which are computed by: 
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4. Results and Discussion 
  

In order to explore the mathematical solution of the conjugated heat transfer problem subjected to a cooling stream 
as outlined above, this section presents some results based on the evaluation of quantities of practical interested such as 
local and average heat transfer flux at the interfacial surface together with its temperature distribution. Also desirable 
are the contour plots of the temperature distribution inside the heated block and of the fluid flow.  

It is clear from the previous analysis that the above-mentioned quantities depend upon various parameters such as 
the thermal conductivity ratio, aspect ratio, Reynolds and Prandtl numbers, and the thermal boundary conditions at the 
exit wall. Therefore, it is interesting to establish a discussion based on typical situations related to cooling of electronic 
equipment. Experimental values of k* range between 38 and 384 when one considers the flow of air at 25°C and the 
solid block made of either epoxy or ceramic materials, respectively (Wang and Saulnier, 1993). So, in order to explore a 
broad interval, we considered a k* raging from 40 to 500 in our computations. As for the Reynolds number in this 
application, typical values for the air stream are in the vicinity of 1.5 m/s and as far as the kinematic viscosity is 
concerned the air temperature ranges from 25°C to 90°C. The characteristic length for a single processor is about 10 
mm and for a whole motherboard is typically around 244 mm. These values suggest that realistic values for Reynolds 
numbers are found to be between 1.0 × 103 (processor) and 2.5 × 104 (motherboard). In all cases here reported, the 
Prandtl number was fixed at 0.72. As for the aspect ratio, a reasonable value in this case was found to be A = 1/128.  

In order to adhere to the space limitations, results reported here are concerned only to the fourth order 
approximation for both the temperature and velocity profiles. A full account of the other polynomial approximations 
can be found in Santos (2003).  

Table (2) and Tab. (3) present the wall temperature and heat fluxes at the interface for two values of the Reynolds 
number and k* and for the two boundary conditions at the exit wall. As for the isothermal situation depicted on Tab. 
(2), these results indicate that f(x) starts at its prescribed value, attains a peak value, and decreases toward the imposed 
isothermal boundary condition. Accordingly, the wall heat flux exhibits a similar distribution. This behavior is expected 
because the heat generation inside the block is taken to be constant. When the Reynolds number is shifted from 1.0 × 
103 to 2.5 × 104 the temperature field exhibits a decreasing pattern while the wall heat flux is noticeably higher. Also, 
the peak value of the interfacial temperature distribution is displaced to the right. Of course, this trend is also expected 
due to the more accentuated convection effects over the board.  

 
Table 2 - Dimensionless interfacial temperature and heat flux distributions for a fourth-degree polynomial temperature 

and velocity approximation. Isothermal surface at x = 1, A= 1/128. 
 

Re = 1.0 × 103 Re = 2.5 × 104 
k* = 50 k* = 500 k* = 50 k* = 500 

x 

f(x) q& (x) f(x) q& (x) f(x) q& (x) f(x) q& (x) 
0.1 0.155E+01 0.651E+00 0.452E+01 0.190E+00 0.418E+00 0.878E+00 0.243E+01 0.511E+00 
0.2 0.262E+01 0.779E+00 0.800E+01 0.238E+00 0.643E+00 0.955E+00 0.421E+01 0.626E+00 
0.3 0.340E+01 0.826E+00 0.105E+02 0.255E+00 0.805E+00 0.977E+00 0.551E+01 0.668E+00 
0.4 0.396E+01 0.832E+00 0.120E+02 0.253E+00 0.936E+00 0.983E+00 0.638E+01 0.670E+00 
0.5 0.430E+01 0.808E+00 0.126E+02 0.237E+00 0.105E+01 0.982E+00 0.682E+01 0.641E+00 
0.6 0.439E+01 0.753E+00 0.122E+02 0.210E+00 0.113E+01 0.969E+00 0.680E+01 0.583E+00 
0.7 0.416E+01 0.660E+00 0.108E+02 0.172E+00 0.117E+01 0.931E+00 0.624E+01 0.496E+00 
0.8 0.349E+01 0.518E+00 0.837E+01 0.124E+00 0.112E+01 0.833E+00 0.504E+01 0.374E+00 
0.9 0.219E+01 0.307E+00 0.478E+01 0.670E-01 0.841E+00 0.589E+00 0.303E+01 0.212E+00 
1.0 0.108E-14 0.144E-15 0.212E-14 0.281E-16 0.520E-15 0.346E-15 0.142E-14 0.942E-16 
 =q& 0.633E+00 =q& 0.180E+00 =q& 0.843E+00 =q& 0.492E+00 

 
The effect of solid to fluid conductivity ratio in the cooling process can also be inferred from Tab.(2). As k* 

increases from 50 to 500 for a fixed Reynolds number, the interfacial temperature distribution exhibits a significant 



 
increase with its peak value leaning toward the left. Due to the higher conduction process within the solid, the 
convective cooling process is markedly reduced as shown by the values of q& (x) and q& . 

Table (3) carry out the same study but now taking into account an adiabatic exit wall condition. As for the insulated 
situation here presented, the results indicate that f(x) increases monotonically toward a peak value at x = 1. On the other 
hand, the local heat flux exhibits a pattern similar to the previously studied case but here the magnitude of both local 
and average heat flux are higher. As a matter of fact, the insulated wall at boundary x = 1 inhibits the conduction 
process within the solid and thus a higher interfacial heat flux is naturally expected. Also, because of the present 
insulated condition, higher values for the temperature field are predictable when compared to the isothermal boundary 
condition.  

 
Table 3 - Dimensionless interfacial temperature and heat flux distributions for a fourth-degree polynomial temperature 

and velocity approximation. Insulated surface at x = 1; A = 1/128. 
 

Re = 1.0 × 103 Re = 2.5 × 104 
k* = 50 k* = 500 k* = 50 k* = 500 

x 

f(x) q& (x) f(x) q& (x) f(x) q& (x) f(x) q& (x) 
0.1 0.159E+01 0.668E+00 0.679E+01 0.285E+00 0.418E+00 0.878E+00 0.266E+01 0.559E+00 
0.2 0.272E+01 0.809E+00 0.127E+02 0.376E+00 0.643E+00 0.955E+00 0.473E+01 0.703E+00 
0.3 0.361E+01 0.875E+00 0.177E+02 0.430E+00 0.806E+00 0.978E+00 0.641E+01 0.778E+00 
0.4 0.433E+01 0.909E+00 0.221E+02 0.463E+00 0.939E+00 0.986E+00 0.781E+01 0.820E+00 
0.5 0.493E+01 0.926E+00 0.257E+02 0.483E+00 0.105E+01 0.990E+00 0.897E+01 0.843E+00 
0.6 0.543E+01 0.932E+00 0.287E+02 0.492E+00 0.116E+01 0.992E+00 0.993E+01 0.852E+00 
0.7 0.585E+01 0.929E+00 0.310E+02 0.493E+00 0.125E+01 0.991E+00 0.107E+02 0.850E+00 
0.8 0.617E+01 0.917E+00 0.327E+02 0.486E+00 0.133E+01 0.987E+00 0.113E+02 0.838E+00 
0.9 0.639E+01 0.895E+00 0.337E+02 0.472E+00 0.139E+01 0.974E+00 0.116E+02 0.816E+00 
1.0 0.647E+01 0.860E+00 0.341E+02 0.453E+00 0.142E+01 0.943E+00 0.118E+02 0.783E+00 
 =q& 0.846E+00 =q& 0.427E+00 =q& 0.947E+00 =q& 0.758E+00 

 
Figure (1) and Fig.(2) depict the temperature contours for the case of isothermal and adiabatic boundary conditions, 

respectively.  
 

 
Figure 1 � Block and fluid temperature contours for a fourth-degree polynomial temperature and velocity 
approximations. Isothermal surface condition at x = 1, k*  = 50, A = 1/8, Re = 1.0 × 103. 
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Figure 2 � Block and fluid temperature contours for a fourth-degree polynomial temperature and velocity 

approximations. Insulated surface condition at x = 1, k*  = 50, A = 1/8, Re = 1.0 × 103. 
 
A comparison between these two results indicate the influence of the boundary condition in the context of this 

problem, as higher temperature levels are again noticeably for the insulated situation. Moreover, for the case of Re = 1.0 
× 103 the temperature contours appear to be slightly distorted due to the not so efficient cooling effect associated to a 
low Reynolds number. Also for this specific case, one notices that the �hot spots� are located in the center of the block. 
In contrast, the insulated wall in Fig. (2) displaces these �hot spots� to the right of the block while the isotherms are 
markedly affected by the more efficient heat removal process due to a higher Reynolds number. 

As a conclusion, an approximate but yet accurate methodology for the assessment of temperature levels and heat 
transfer removal in electronic equipment was here advanced. This methodology is based on the analysis of a conjugate 
problem that represents the interaction between the circuit board or the processor and a cooling air stream. The 
mathematical formulation employs a two dimensional differential equation for the solid material together with 
polynomial approximations for the fluid flow and thus an analytical solution is obtained. Numerical simulations show 
that the worst-case scenario for cooling of electronic equipment is represented by an insulated exit wall condition where 
the levels of temperature are higher than the isothermal situation and a markedly higher wall heat flux to be dissipated 
to the cooling fluid is demanded.  
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