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Abstract. The temperature field in conduction heat transfer within an spheroidal solid is analytically analyzed by using the
Generalized Integral Transform Technique (GITT) methodology. The mathematical modeling of the problem is done by assuming
that the solid surface can be described by a general function, in such way the cylindrical coordinates system is employed to avoid
those ones that lead to models of difficulty solutions. A computational code was developed to compute the temperature field within
the solid of different geometric configurations, and the results were then compared with those previously reported in the literature
for typical situations.
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1. Introduction

Conduction heat transfer in spheroidal solids is frequently found in applications involving the processing of foods
and grains such as in the drying of fruits and seeds, to name a few. The mathematical modeling of this problem is done
by writing the heat conduction equation in coordinates systems that lead to more involved solutions. The classical paper
of Haji-Sheikh and Sparrow (1966) shows the analysis of heat conduction in a prolate spheroidal solid, in which the
solution is expressed in terms of coupled spherical Bessel and Legendre functions. Along the years many works have
treated this problem using analytical or numerical schemes to solve the heat diffusion equation (Haji-Sheikh, 1986;
Lima and Nebra, 1999).

The present work in order to avoid the analysis pointed out in the papers cited above and to handle more complex
geometric configurations, assumes that the solid surface can be described by a general function, in such way the
cylindrical coordinates system is employed to modeling the problem, and consequently the ideas of the well-established
Generalized Integral Transform Technique (GITT) for problems in irregular domains (Aparecido et all, 1989;
Aparecido and Cotta, 1990; Cotta, 1993 and 1994; Pérez Guerrero et all, 2000 and Chaves et all, 2001) are then used to
obtain the solution of this more general formulation. This spectral-type approach is based on eigenfunction expansions
yielding to solutions where the most features are the automatic and straightforward global error control and, an only
mild cost increase in overall computational effort for multidimensional situations. Due to its analytical and hybrid
natures, this scheme has been well indicated for benchmarking purposes and for the validation of different numerical
methods in many classes of heat, mass and fluid flow problems.

Numerical results for the temperature field are obtained, considering different geometric configurations subjected to
a first kind boundary condition at the surface, which are compared with those previously reported in the literature for
typical situations.

2. Analysis

We consider transient heat conduction in spheroidal solids in which their surfaces are described for a general
function and are subjected to a first kind boundary condition as shown in Fig. (1). Assuming constant thermophysical
properties and no internal heat generation, the heat diffusion equation in cylindrical coordinates system in
dimensionless form is written as follows:
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subjected to the initial and boundary conditions:
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where the following dimensionless variables are defined:
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The dimensionless variable RW(Z) describes a general function to represent the solid surface, and for typical
situations values for the aspect ratio γ are taken as:
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Figure 1. Geometry and coordinate system for heat conduction in spheroidal solids.

2.1. Solution methodology

Following the formalism in the GITT approach to handle problems in irregular domains (Cotta, 1993 and 1994), to
construct the eingenfunctions expansion, the auxiliary eigenvalue problems are selected as:

- radial direction:
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where Z is just a parameter in the problem (4) above.
The eigenfunctions and the transcendental expression to calculate the eigenvalues are given, respectively, by:
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The eigenfunctions of this eigenvalue problem enjoy the following orthogonality property:
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and the normalization integral is defined as:
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- axial direction:
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Problem (5) above is analytically solved to give the eigenfunctions and the eigenvalues, respectively, by:
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The orthogonality property for this eigenvalue problem is given as:
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The problems given by Eqs. (4) and (5) allow the definition of the following integral-transform pair:
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The initial condition, Eq. (1b), is similarly integral transformed to provide:
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where the coefficient in Eq. (8) is given by:
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In Eq. (8) each summation is associated with the eigenfunction expansion in a corresponding spatial coordinate, for
computational purposes, the series solution given by Eq. (8) is, in general, truncated to a finite number of terms in order
to compute the potential θ(R,Z,τ). The solution convergence is verified by comparing the values for the potential
obtained with the truncated series for different numbers of retained terms. Such number of terms is commonly user-
supplied and even taken as the same for each summation.

Then, the indices i and m related to the temperature field are reorganized into the single index p, while the indices j
and n are collapsed into the new index q. The associated double sums are then rewritten as:
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where

i = int[(p–1)/N] + 1, j = int[(q–1)/N*] + 1, m = p – (i–1) N and n = q – (j–1) N* (11c-f)

The truncated version of system (8) is now rewritten in terms of these new indices as:
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The coupled system of ordinary differential equations (12) is solved by efficient numerical algorithms for initial
value problems, such as in subroutine IVPAG from the IMSL package (1991), with high accuracy. Then, after the
transformed potentials are obtained, quantities of practical interest are determined from the analytic inversion formula
(7), such as the dimensionless average temperature
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Equation (13b) is then rewritten in terms of the new indices according to Eqs. (1), to yield
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3. Results and discussion

Numerical results for the temperature field and average temperature were produced for different values of aspect
ratio, namely γ-1 = 0.5; 1.0; 2.0 and 5.0, within the spheroidal solid. The computational code was developed in
FORTRAN 90/95 programming language and implemented on a PENTIUM-IV 1.3 GHz computer. The routine
DIVPAG from IMSL Library (1991) was used to numerically handled the truncated version of the system of ordinary
differential equations (12), with a relative error target of 10-7 prescribed by the user, for the transformed potentials.

First, Tables (1) to (3) show the convergence behavior of the temperature field at the center (R = 0, Z = 0) and at
the focal point (R = L, Z = 0 for γ-1 = 0.5 and R = 0, Z = L for γ-1 = 2.0) of the spheroidal solid and the convergence
behavior of the dimensionless average temperature for different dimensionless times, respectively. It is observed in this
table an excellent convergence ratio, with practically three digits converged for all positions studied.

Table 1. Convergence behavior of the temperature field at the center of the spheroidal solid (R = 0, Z = 0).

τ NT = 100 NT = 200 NT = 300 NT = 400 NT = 500

γ-1 = 0.5
0.08 0.3689 0.3687 0.3695 0.3688 0.3688
0.10 0.2499 0.2498 0.2503 0.2498 0.2498
0.20 0.3576x10-1 0.3570x10-1 0.3576x10-1 0.3569x10-1 0.3568x10-1

0.40 0.7320x10-3 0.7300x10-3 0.7300x10-3 0.7280x10-3 0.7280x10-3

0.60 0.1500x10-4 0.1500x10-4 0.1500x10-4 0.1500x10-4 0.1500x10-4

0.80 0.0000 0.0000 0.0000 0.0000 0.0000
1.00 0.0000 0.0000 0.0000 0.0000 0.0000

γ-1 = 2.0
0.08 0.9734 0.9735 0.9745 0.9737 0.9738
0.10 0.8557 0.8558 0.8565 0.8560 0.8560
0.20 0.4413 0.4414 0.4416 0.4414 0.4414
0.40 0.1081 0.1081 0.1081 0.1081 0.1081
0.60 0.2546x10-1 0.2546x10-1 0.2547x10-1 0.2546x10-1 0.2546x10-1

0.80 0.5948x10-2 0.5947x10-2 0.5949x10-2 0.5948x10-2 0.5948x10-2

1.00 0.1387x10-2 0.1387x10-2 0.1387x10-2 0.1387x10-2 0.1387x10-2

Table 2. Convergence behavior of the temperature field at the focal point of the spheroidal solid (R = L, Z = 0 for
γ-1 = 0.5 and R = 0, Z = L for γ-1 = 2.0).

τ NT = 100 NT = 200 NT = 300 NT = 400 NT = 500

γ-1 = 0.5
0.08 0.6386x10-1 0.6380x10-1 0.6390x10-1 0.6379x10-1 0.6381x10-1

0.10 0.4326x10-1 0.4321x10-1 0.4327x10-1 0.4320x10-1 0.4321x10-1

0.20 0.6190x10-2 0.6176x10-2 0.6182x10-2 0.6170x10-2 0.6171x10-2

0.40 0.1270x10-3 0.1260x10-3 0.1260x10-3 0.1260x10-3 0.1260x10-3

0.60 0.3000x10-5 0.3000x10-5 0.3000x10-5 0.3000x10-5 0.3000x10-5

0.80 0.0000 0.0000 0.0000 0.0000 0.0000
1.00 0.0000 0.0000 0.0000 0.0000 0.0000

γ-1 = 2.0
0.08 0.2297 0.2269 0.2279 0.2295 0.2297
0.10 0.1715 0.1694 0.1701 0.1713 0.1715
0.20 0.5428x10-1 0.5370x10-1 0.5392x10-1 0.5427x10-1 0.5433x10-1

0.40 0.9658x10-2 0.9558x10-2 0.9597x10-2 0.9659x10-2 0.9669x10-2

0.60 0.2123x10-2 0.2101x10-2 0.2109x10-2 0.2123x10-2 0.2125x10-2

0.80 0.4890x10-3 0.4840x10-3 0.4860x10-3 0.4890x10-3 0.4890x10-3

1.00 0.1140x10-3 0.1120x10-3 0.1130x10-3 0.1140x10-3 0.1140x10-3



Table 3. Convergence behavior of the dimensionless average temperature for different dimensionless times.

τ NT = 100 NT = 200 NT = 300 NT = 400 NT = 500

γ-1 = 0.5
0.08 0.1336 0.1335 0.1334 0.1334 0.1334
0.10 0.9059x10-1 0.9045x10-1 0.9040x10-1 0.9037x10-1 0.9035x10-1

0.20 0.1296x10-1 0.1293x10-1 0.1292x10-1 0.1291x10-1 0.1291x10-1

0.40 0.2650x10-3 0.2640x10-3 0.2640x10-3 0.2630x10-3 0.2630x10-3

0.60 0.5000x10-5 0.5000x10-5 0.5000x10-5 0.5000x10-5 0.5000x10-5

0.80 0.0000 0.0000 0.0000 0.0000 0.0000
1.00 0.0000 0.0000 0.0000 0.0000 0.0000

γ-1 = 2.0
0.08 0.3484 0.3484 0.3484 0.3484 0.3484
0.10 0.2976 0.2975 0.2975 0.2975 0.2975
0.20 0.1386 0.1386 0.1386 0.1386 0.1386
0.40 0.3162x10-1 0.3162x10-1 0.3162x10-1 0.3162x10-1 0.3162x10-1

0.60 0.7338x10-2 0.7337x10-2 0.7337x10-2 0.7337x10-2 0.7337x10-2

0.80 0.1709x10-2 0.1709x10-2 0.1709x10-2 0.1709x10-2 0.1709x10-2

1.00 0.3980x10-3 0.3980x10-3 0.3980x10-3 0.3980x10-3 0.3980x10-3

Now, it is presented in Figs. (2) and (3) a comparison of the present results among those analytical results presented
by Haji-Sheikh and Sparrow (1966) and Haji-Sheikh (1986) and an analytical solution presented by Özisik (1993) for
the case of heat conduction in a sphere. From these figures it is observed a good agreement among the results and can
also be verified that for γ > 1 (L1 > L2 that represents oblate solids) the solid surface Rw(Z), which is subjected to zero
temperature, is near to center of the solid and consequently at this point the level of temperature tends to zero more
rapidly. On the other hand, as the aspect ratio decreases the temperature at the center is less affected by the boundary
condition at surface Rw(Z). It is observed an opposite behavior for the temperature at the focal point.
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Figure 2. Comparison of the temperature field at the center of the spheroidal solid for different aspect ratios.
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Figure 3. Comparison of the temperature field at the focal point of the spheroidal solid for different aspect ratios.

Finally, Fig. (4) brings the development of the dimensionless average temperature for different aspect ratios and the
same observations as the center analysis are verified.
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Figure 4. Development of the dimensionless average temperature within the spheroidal solid for different aspect ratios.

4. Conclusions

Numerical results for the temperature field within spheroidal solids with different aspect ratios were produced by
using the GITT approach in the solution of the heat conduction equation. Comparisons with previously reported results
indicated a good agreement and demonstrating the powerfulness of the GITT approach in handling problems dealing
with irregular domains. Also the results indicate that the thermal response at the center point is most rapidly for oblate
solids and a inverse behavior is verified at the focal point.
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