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Abstract. The aim of this work is a numerical and experimental study of the natural convection heat transfer on a vertical flat plate, 
subjected to a constant heat flux. The experimental study was performed on an experimental setup designed in order to assuming, 
with a good approximation, those adopted natural convection hypotheses on a heated vertical flat plate. The experimental setup is 
constituted by one glass reservoir with 560 mm long, 470 mm height and 130mm width. The heated vertical flat plate, measuring 
315 mm height and by 35 mm width was made in aluminium, having  in its interior a heat source made of thermo-foil heaters, with 
dimensions of 25,4mm x 152,4 mm each, a nominal electrical resistance of 20.8 , and 12A of  maximum electrical current.  The 
numerical simulation of the flow, made by the CFX-5.5.1 code from the AEA Technology, solves the flow respecting the geometry, 
the initial and boundary conditions utilized in the laboratory. The turbulent models used are the κ-ω of Wilcox (1998) and the SST 
of Menter (1993). The obtained results are represented by means of correlations that show the variations of local Nusselt number in 
function of local Rayleigh number. The numerical and experimental results obtained, show a good proximity when compared to the 
empirical-dimensional and analytical previsions for laminar and transition natural convection. 
 
 Keywords. Natural laminar and transition convection, vertical flat plate, constant heat flux, experimental analysis, numerical 
analysis. 

 
1. Introduction  
 

Natural convection on verticals walls is a physical phenomenon strongly associated to the human activity. 
Both, generation and use, of the thermal energy and the thermal comfort, are areas where this kind of phenomenon is 
widely present. 

The most common situation, where natural convection appears, is when body forces act in a fluid with density 
gradients. As result of the action of the gravitational force, in a stratified fluid, there appears a buoyancy force that 
causes a natural convection flow. Usually the density gradient is due to the temperature gradients. 

The origin of natural convection is an unstable situation, resulting from the orientation of the temperature 
gradient. However, a flow will only occur, when the buoyancy forces defeats the dissipative effect of the viscous forces.  

Several techniques and process of solution had been developed for the qualitative and quantitative analysis of 
convection, amongst which one may to make reference to experimental techniques, pure theoretical analysis and 
numerical simulation. Empirical approaches based on scaling analysis and finished by experimental information, and 
most recently, numerical simulations techniques, arisen to the computational advances, have been used in the study of 
natural convection. The works of Bejan (1984), Kays and Crawford (1980) and Burmeister (1983) are examples of the 
most usual solutions, of laminar, transition and turbulent natural convection, based in theoretical, numerical and scaling 
analysis. The works of Qureshi and Gebhart (1978), Vliet and Liu (1969) and Goldstein and Eckert (1960) are classical 
works in the experimental investigation on laminar, transition and turbulent natural convection on a uniformly heated 
vertical plate. 

The aim of this work is the study of the natural convection on a vertical flat plate, subjected to a constant heat 
flux, in contact with a stagnant water reservoir. Three kinds of analysis were used in this work: experimental approach, 
scaling analysis and numerical simulation. This study begins, with an analysis of the scales of the terms appearing on 
the governing equations, which are used to drive the experiments and the numerical methods, to verify the experimental 
and numerical results as well to establish the relation between the Nusselt and Rayleigh numbers. Seven different flows, 
obtained for different intensities of the heat flux on the vertical plate, were analyzed.  

The use of the numerical simulation, in this work, has as objective to evaluate the capacity of a industrial 
computer code, in the prediction of the laminar and the beginning of transition flow in natural convection. 

 
2. Governing Equations and Scaling Analysis 

 
We suppose a water steady state flow on a vertical flat and impermeable plate, subjected to no-slip wall 

conditions and to a constant heat flux through the wall. The fluid in the reservoir is initially considered stationary and 
isothermal. The Boussinesq hypothesis is used to model the buoyancy effects.  
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The typical scales, of the hydrodynamic and thermal boundary layer, should be defined. A typical scale for 
length, in a perpendicular direction to the wall, is the thermal boundary layer thickness, δT, and a scale for length, along 
the tangent direction to the wall, is the length of the flat plate H, where H >> δT. The representative scales for the 
velocity and temperature gradients are considered to obey the following relations: 
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where x and y are the independent position variables, respectively, in the perpendicular direction to the wall and in the 
tangent direction to the wall, u and v the velocity components along these directions and T is the temperature. 

From equation (1) it is possible to affirm that the only important component of the shear stress is: 
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where τxy and τyx are the shear stresses and µ the molecular viscosity. Due to equation (2), the rates of diffusion heat 
flux, normal to the wall, has a higher magnitude than the longitudinal ones. 

An evaluation of the orders of magnitude of the component terms of the general equations, representative of 
the mass conservation, momentum conservation and energy conservation, considering the typical scales of the 
hydrodynamic and thermal layers, condensed by the relationships (1), (2) and (3), under the restrictions of the approach 
of Boussinesq for natural convection, gives the following equations in Cartesian coordinates for the natural convection 
on a vertical flat plate:  
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The conservation principles of mass, momentum and energy are expressed by equations (4), (5), (6) and (7). 

Equations (5) and (6) are the momentum equations in the longitudinal and the transverse directions respectively. The 
pressure is represented by p and T∞ is the external temperature, out of the thermal boundary layer. The fluid properties 
such as the density ρ0, the molecular viscosity µ and the thermal diffusivity α are assumed constant. The gravitational 
acceleration is represented by g. The sole property that is allowed to change with temperature is β, the thermal 
expansion coefficient. It represents the effect of the local variation of the density of the fluid, which will be used strictly 
on the buoyancy term of equation (6).  

Besides that, it is important to establish an order of magnitude for the difference of temperature: 
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The subscript W represents the values that are assumed at the wall. The heat flux q is modeled by the Fourrier Law, in 
terms of the length and temperature scales:  
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In the above equation, k represents the thermal conductivity. 



 
The scale analysis for natural convection starts on the study of the momentum equation, equation (6). This 

equation shows the existence of three different types of forces: inertia force, friction force and buoyancy force, this last 
one being the most important force of the flow. The order of magnitude of these three forces scales as, 
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where H represents the vertical length of the plate and υ the kinematics viscosity of the fluid. To characterize, the 
relative dimensions of these forces, we make a relation of the three magnitude orders with the scale of the buoyancy 
force: gβ∆Τ. The result obtained from this procedure is shown, in a convenient way, as 
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where Pr and Ra represent the numbers of Prandtl and the total number of Rayleigh, defined respectively by the 
equations 
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The order of magnitude of the inertia forces, friction forces and buoyancy forces, expressed as a function of the 

scale of the buoyancy forces, shows that the Prandtl number defines the competition between inertia forces and friction 
forces. For fluids with high values of Prandtl number, the buoyancy forces should balance the friction forces, since 
inertia forces are negligible. Fluids with low values of the Prandtl number will originate flows where the buoyancy 
forces should balance mainly inertia forces. 

As the fluid to be analyzed is the water, which, under usual pressure and temperature conditions, has a Prandtl 
number around 6, only the results for Prandtl numbers greater than 1 will be shown. For this condition, the scales for the 
velocity components u and v, as well as the relation between the thickness of the hydrodynamic boundary layer δ and 
the thermal boundary layer δT, (δ /δT), and the Nusselt number are shown in the Table 1. These are presented as 
functions of the thermal diffusivity α, the flat plate length H, the total Rayleigh number Ra and the Prandtl number Pr. 
 
Table 1. Order of magnitude of the most important variables. 
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The relations defined on Table 1 were used to guide the construction of the experimental setup and they were 
important, as well, to the calibration of the sensors used to acquire significant data. These results will be essential to 
establish a relation between the local Nusselt number, defined as hy/k, and the local Rayleigh number.  
 
3. Experimental Analysis 
   
3.1 Experimental Installation 
 

The experimental setup is composed by four main components: a water reservoir made of glass, a vertical 
aluminum flat plate, a heating system and a data acquisition system, as shown on the figure 1.   

The dimensions of the reservoir are 470 x 560 x 130mm (height, width and depth). Twelve cooper-constantan 
thermocouples are used to measure the temperature along the plate and two are used to evaluate the temperature of the 
reservoir, far from the thermal boundary layer.  

The thermocouples are distributed on the center line of the flat plate and were numbered from the leading edge 
to the top of the flat plate, as shown in table 2. 

 



  

 
Figure 1. Experimental setup. 

 
Table 2. Thermocouple distribution along the flat plate. 
 
 

Thermocouple Distance from the beginning of the 
board (mm) 

1 2 
2 5 
3 10 
4 15 
5 20 
6 25 
7 30 
8 50 
9 100 

10 200 
11 250 
12 290 
13 
14 

Thermocouples used to monitor the 
water temperature  

 
 
This implies that the energy that is introduced into the plate by these thermo-foils, will be dissipated only by 

the wet face. The thermo foil heaters are supplied by a constant voltage. The figure 2 shows with details of the assembly 
of the plate. A DaqBooK data acquisition system is used for the acquisition, treatment and storage of the thermocouple 
signals. The description of the installation is the following: a TCA 120-20 Tectrol electric current stabilizer of 2400 W 
power and voltage band from 0 to 120 V, current band from 0 to 20 A; Omega Engineering thermocouples copper-
constantan of 0.1 mm diameter; Embrapol polyester resin with catalyser concentration of 1%; Iotech DaqBok 112 
DBK19 acquisition board, with a DaqView 7.8.0 Iotech acquisition software; Minco HK5335R20.8L12A 876 thermo 
foil heater, with 25,4 mm x 152,4 mm, with electric resistance of 20.8 Ω and maximum current of 12A. Figure 2 shows 
the details of the assembly of the flat plate. 

 
 
 
 
 
 
 
 
 
 

 
Figure 2. Flat plate details. 
 
3.2 Experimental Methodology 
 

The used experimental methodology is based on the measurement of the TW(y) temperature that establishes on 
the heated vertical flat plate. This temperature is caused by the heat generated by Joule effect in the electric resistances. 
It is transmitted to the plate and, consequently, to the fluid in the reservoir. At steady state, the heat dissipated by the 
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electric resistances is absorbed by the aluminum flat plate and is transmitted integrally to the fluid on the reservoir, by 
convection. At these conditions, the equation of the convective heat flux per area unit, allows to calculate the local 
convective heat transfer coefficient h as   
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where the specified heat flux q is known and the temperatures of the wall TW (y) and of the reservoir T∞ are measured by 
the thermocouples. The variations of the flow along the flat plate are presented, under non-dimensional form, in terms 
of a local Nusselt number and local Rayleigh number correlation. It is intended to determine a correlation expression as 
follows: 
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where the local Nusselt number and the local Rayleigh number are, respectively, calculated by: 
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The experiments were carried on for different heat flux intensities in the wall and the data acquisition started 

when the flow reached the steady state. Therefore, at this condition, the thermocouple temperature signals were constant 
for each heat flux condition. The statistical treatment of the data was based on twenty realizations for each experiment, 
with five 5 seconds each and 10 Hz of acquisition system. It could then be determined an average value for the 
temperature for each thermocouple, associated to a standard deviation. The statistical treatment given to the acquired 
data, determined for each experiment, is the average value of the temperature and its standard deviation for each 
thermocouple. These values were calculated, respectively, by the following relations:   
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In the above equations N means the number of acquisition data, and the subscript i specifies the thermocouple. 

The table 3 shows the conditions for the seven experiments. 
 
Table 3. Heat fluxes used during the experimental acquisition. 

 

Experiment Heat Flux (W/m2) Dissipated power (W) Battery Voltage (V) 
1 1000 11,01 21,4 
2 1500 16,23 26,2 
3 2000 22,05 30,3 
4 2500 27,56 33,9 
5 3000 33,08 37,1 
6 5000 55,13 47,8 
7 10000 110,25 67,7 

 
The physical properties of the water were taken at 300 K in accordance with Incropera and De Witt (1990):        

k = 0,613 W/mK, µ = 855x10-6 Ns/m2, ρ = 997 Kg/m3, g = 9,81 m/s2, β = 2,761x10-4 K-1, Pr = 5,83. 
 
 
 



  

4. Numerical analysis 
 
 The qualities of numerical results that can be obtained nowadays, especially with industrial tools, justify the 
use of numerical simulations, with turbulence models, in the design of the experimental facilities. 

The used software is CFX 5.5.1 of AEA Technology, with two turbulence models to simulate the free 
convection on flat plate. Due to the flow complexity, especially in the proximities of the hot surface, turbulence models 
that do not use the wall laws were selected. The employed turbulence models were the Wilcox κ-ω (1998) and the SST 
of Menter (1993), which is an improvement of the Wilcox model (1998). The superiority of the results obtained for 
these models, especially with the SST of Menter (1993), compared to the results obtained with the κ-ε model of Jones 
and Launder (1972) complemented by wall laws, which is not efficient near the walls, are verified by the works of 
Leschziner et. al. (1999) and Bardina et. al. (1997). 
 The aim of this work is not to study turbulence models. Thus, the SST and κ-ω models are shown in way to 
evidence their specific characteristics only, what allows to omit the turbulent Reynolds averaged equations of continuity 
and momentum. These last are the same for all first order closure problems based on the turbulence's Bousinesq (1877) 
hypothesis. It should be stressed out that, despite we consider numerical simulations with turbulence models, the 
simulations of the laminar and the transition regions are not affected, since the eddy diffusion coefficients are 
proportional to the turbulence intensity.  

The turbulent modeling, of the convection problem, is made with the introduction of a buoyancy term in the 
average momentum equation. The density variations are modeled by the Boussinesq hypothesis to free convection and 
are associated to a state equation for density. The correlation of temperature and velocity fluctuation is calculated as a 
linear function of the average temperature. The modeling of turbulent heat flux is based on the work of Kader (1981). 

In this work, two-dimensional and three-dimensional simulations have been done. The boundary conditions for 
the two-dimensional one are: for the heated flat plate a no-slip condition with constant heat flux is used; on the base of 
the domain and on the face opposite to the flat plate, the no-slip condition is used and a fixed temperature is imposed. 
This was also proposed for the upper boundary for the domain, but now with a free slip condition. It should be noted 
that for these three last boundaries, the heat transfer coefficient was also specified. The specification of the heat transfer 
coefficient was done with the simplified equations for air given by empirical relations for free convection proposed by 
McAdams (1954). In this work the mesh used for the numerical two-dimensional simulation had 68.667 nodes, 249.774 
elements and 104.814 faces, which is show in the figure 3. In this picture is available a zoom of a near wall region.  

For the three-dimensional simulation, the boundary conditions of the left and right vertical walls of reservoir 
are: a no-slip condition and a specified temperature. For the other boundaries, the same conditions for the two-
dimensional simulations were used. The three-dimensional simulation was performed in order to reproduce the 
experimental setup described on section 3. For this simulation the mesh had 197163 nodes, 1106614 elements, 1106614 
tetrahedrons and 30916 faces. For this mesh a picture is not shown. 
 

 
 

Figure 3. Mesh with zoom in the wall region. 
 
4.1 The κ-ω Model  
 
 The κ-ω model of Wilcox (1998) is a first order closure problem, based on the Boussinesq (1877) hypothesis 
for representation of the Reynolds tensor, where the turbulent length scales are 

ω
κ

υ =t
,               (16) 

 
where υt is the kinematics eddy viscosity, κ the turbulence kinetic energy and ω the specific dissipation of turbulence 
kinetic energy. The introduction of two variables in the system composed by averaged equations, that describes the 



 
flow, imposes the adoption of the transport equations for κ and ω. These variables characterize the Wilcox (1998) 
turbulence model: 
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In equations (17) and (18), U is the velocity vector, µt is the turbulent viscosity, Pk is turbulence production 

rate, defined by 
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where S  is strain rate tensor and β', β, ξ, σk and σω are the constant of the model and are considered, in the CFX, to 

assume the following values: 
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4.2 SST Model 
 
 The model SST is a improvement of the κ-ω model of Wilcox (1998), based on the representation of the eddy 
viscosity through the relationship 
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where F2 is a function defined just in the boundary layer and S is the value of the shear rate. In this model, the function 
F2 is defined as 
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5. Results 
  
 The results were presented in curves that show the local Nusselt number, equation (12), as a function of the 
local Rayleigh number, equation (13), both calculated in terms of the distance from the leading edge of the vertical flat 
plate. The experimental results are showed in comparison with the numerical results, corresponding to the simulate 
values obtained with the turbulence models κ-ω of Wilcox (1998) and SST of Menter (1993), with the 2D grid 
illustrated by figure 3. These results were also compared to analytical results, calculated by the expression proposed by 
Sparrow (1955), which was obtained by an integral analysis for natural convection in vertical flat plate, submitted to 
constant heat flux. This expression is the following 
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 The figures 4, 5, 6 and 7 correspond, respectively, to the experiments with constant heat flux specified in the 
wall of 1000 W/m2, 1500 W/m2, 2000 W/m2, 2500 W/m2, 3000 W/m2, 5000 W/m2 and 10000 W/m2. The beginning of 
transition region, in all the experiments, occurred for values of local Rayleigh number approximately 1012, according 
the results of Qureshi and Gebhart (1978) and Vliet and Liu (1969). In the laminar region, an excellent agreement 
between experimental, numerical and analytical values is observed, for all heat fluxes imposed. 

For all the seven experiments, in the proximity of the transition region, Ray
 ≈ 1012, a growing up divergence is 

observed, between the experimental and the analytical results, and it increases for higher values of local Rayleigh 



  

number. For Ray
 ≈ 1012 in the figure 7(a) takes place the maximum difference observed, between the experimental and 

the analytical values of Nusselt number, arriving up to 23%. 
A very good agreement between the experimental and the numerical results was verified for the results shown 

on figures 4(a) to 6(b). This confirms the capacity of the Menter’s SST model (Menter, 1993) to simulate the behavior 
of the fluid observed experimentally. For the highest value of heat flux, shown in figure 7(a), the numerical values 
obtained by the κ-ω model of Wilcox (1998) provide a good agreement for the laminar region of the flow. However, as 
Ray increases, one can observe errors up to 30%. For this case, the experimental and numerical results, obtained with 
the SST model of Menter (1993), shown to diverge up to 14% for values of Ray larger than 3x1011. 
 

 
Figure 4. (a) Experiment 1, constant heat flux of 1000 W/m2. (b) Experiment 2, constant heat flux of 1500 W/m2. 

 

 
Figure5. (a) Experiment 3, constant heat flux of 2000 W/m2. (b) Experiment 4, constant heat flux of 2500 W/m2.  
 

Figure 6. (a) Experiment 5, constant heat flux of 3000 W/m2. (b) Experiment 6, constant heat flux of 5000 W/m2. 



 
 
It could be observed, in general, the good capacity of the model SST of Menter (1993) to describe the 

beginning of transition and all laminar region. 
The figure 7(b) shown all the experimental results obtained. It could be observed that the variation of local 

Nusselt number does not depend on the wall heat flux in the laminar region. In the begin of the transition region, Ray ≈ 
1012, the dependence of the Nusselt number with the heat flux is not sensible in the figure 7(b), however the 
experimental data indicate this tendency.   

For the experiments 1 to 6, the coefficient ‘c’ presented in equation (11), was calculated for the numerical 
results and for the experimental results. The values obtained for these coefficients were in good agreement. The value 
found with the experimental data is 0.72 while the numerical results lead to 0.71. The results obtained by Qureshi and 
Gebhart (1978) and Vliet and Liu (1969) are respectively 0.587 and 0.64. 

 

 
Figure 7. (a) Experiment 7, constant heat flux of 10000 W/m2. (b) Experimental results. 

 

 
 
Figure 8. (a) Velocity field for stagnant reservoir. (b) Temperature field for stagnant reservoir. 
 

The velocity and the temperature fields presented in figures 8(a) and 8(b), calculated with the 3D grid, shows 
that the reservoir is actually stagnant and isothermal, as it was expected. Those results confirm that the reservoir was 
correctly designed for the study of natural convection on a flat plate. If the velocity intensities were significant, this 
would become a problem of cavity with recirculation flow. 
 
6. Conclusions 
 

It was verified a good agreement among the experimental, the numerical and the analytical results for both 
laminar and the beginning of transition regimes, in the first six experiments and in the majority of the results obtained in 
the seventh experiment. Thus it allows us to conclude that the methodology and the experimental equipment employed 
in this work are consistent and the proposed objective was attained.  

The analytical results proposed by the classic relation of Sparrow (1955) are practically identical to the 
numerical and experimental results in the laminar region of the flow (Ray < 1012).  



  

The experimental data has shown the invariability of local Nusselt number with the heat flux in the laminar 
regime of the flow and the tendency of dependence of the Nusselt number with the heat flux in the beginning of 
transition region. 
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