
 

DYNAMIC INSTABILITY OF FLUID FILLED CIRCULAR CYLINDRICAL 
SHELLS 
 
P. B. Gonçalves 
Pontifical University of Rio de Janeiro – PUC -  Rio, Civil Enegineering Department. 22453-900 -  Rio de Janeiro - Brazil 
paulo@civ.puc-rio.br 
 
Z. J. G. N. del Prado 
F. M. A. Silva 
Federal University of Goiás, UFG,  Civil Engineering Department. 74605-220 – Goiânia, GO, Brazil 
zenon@eec.ufg.br 
 
Abstract. This paper discusses the dynamic instability of fluid filled cylindrical shells subjected to time dependent axial edge loads. 
In the present paper a simplified low dimensional model, which retains the essential non-linear terms, is used to study the non-linear 
oscillations and instabilities of the shell. For this, Donnell’s shallow shell equations are used together with the Galerkin method to 
derive a set of coupled non-linear ordinary differential equations of motion, which are in turn, solved by the Runge-Kutta method. 
To study the non-linear behavior of the shell, several numerical strategies were used to obtain Poincaré map and bifurcation 
diagrams. Special attention is given to the influence of the fluid on the escape boundaries. The numerical results obtained in this 
investigation clarify the conditions where instability may occur and help to derive safe design criteria for these shells under 
dynamic loads. 
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1. Introduction  
 

Thin-walled cylindrical shells are widely used in many industries. Due to increasing use of high-strength materials, 
the use of sophisticated numerical techniques and optimization methods in analysis, the design of such shells is often 
buckling-critical. In many circumstances these shells are subjected not only to static loads but also to dynamic 
disturbances and filled with internal fluid. However, thin-walled cylindrical shells when subjected to axial compressive 
loads often exhibit a highly nonlinear behavior with a high imperfection sensitivity and may loose stability at loads 
levels as low as a fraction of the material’s strength. 

Many studies are concentrated on the analysis of shells vibrating in vacuum and much less is focused on the 
analysis of the nonlinear vibrations of cylindrical shells in contact with a dense fluid. One of the first studies on 
vibrations of circular cylindrical shells in contact with a dense fluid considering shell nonlinearity was published by 
Ramachandran (1979). He studied the large-amplitude vibrations of circular cylindrical shells having circumferentially 
varying thickness and immersed in a quiescent, inviscid and incompressible fluid using the Donnell’s shell theory.  

Boyarshina (1984, 1988) studied theoretically the nonlinear free and forced vibrations and stability of a circular 
cylindrical tank partially filled with a liquid and having a free surface. Here, nonlinearity is attributed to the interaction 
of free surface waves and elastic flexural vibrations of the shell. 

Gonçalves and Batista (1988) considered simply supported circular cylindrical shells filled with incompressible 
fluid. For modeling the shell, Sanders nonlinear theory and a novel modal expansion that includes two terms in the 
radial direction (the asymmetric and the axisymmetric ones) and ten terms to describe the in-plane displacements were 
used. Numerical results were obtained concerning the effect of the liquid on the nonlinear behavior of shells. It was 
found that the presence of a dense fluid leads to more strong softening results vis-a-vis those for the same shell in 
vacuum.  

Chiba (1993b) studied experimentally the large-amplitude vibrations of two vertical cantilevered circular 
cylindrical shells made of a polyester sheet partially filled with different levels of water. He observed that for bulging 
modes with the same axial wave number, the weakest degree of softening nonlinearity can be attributed to the mode 
having the minimum natural frequency, as observed for the same empty shells. He also found that shorter tanks have a 
larger softening nonlinearity than taller ones, as in vacuum. The tank with a lower liquid height has a greater softening 
nonlinearity than the tank with a higher liquid level. 

Amabili et al (1998) studied the nonlinear free and forced vibrations of a simply supported, circular cylindrical shell 
in contact with an incompressible and inviscid, quiescent dense fluid. Donnell’s nonlinear shallow-shell theory is used. 
The boundary conditions on radial displacement and continuity of circumferential displacement are exactly satisfied, 
while axial constraint is satisfied “on the average”. The problem is reduced to a system of ordinary differential 
equations by means of the Galerkin method, assuming an appropriate deflection shape. The mode shape is expanded by 
using two asymmetric modes (driven and companion modes) plus the axisymmetric mode. 

In the present study, a low dimensional model, which retains the essential nonlinear terms is used to study then 
nonlinear oscillations and instabilities of the shell. Here the interest is focused on a pivotal interaction between non-
symmetric and axi-symmetric modes, which produce escape from the pre-buckling potential well. To discretize the 
shell, Donnell shallow shell equations, modified with the transverse inertia force, are used together with Galerkin 
method to derive a set of coupled ordinary differential equations of motion, which are, in turn, solved by the Runge-
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Kutta method. In order to study the nonlinear behavior of the shell, several numerical strategies were used to obtain 
time responses, Poincaré maps and bifurcation diagrams. 

The fluid is modeled as non-viscous and incompressible and its motion is assumed to be irrotational. As a result, it 
can be characterized by a velocity potential. The solution for the velocity potential is taken as a sum of suitable 
functions, the unknown parameters of which are determined by the kinetic condition along the wetted surface of the 
shell (Batista and Gonçalves, 1988). 
 
2. Problem Formulation 
 
2.1 Shell Equations 
 

Consider a perfect thin-walled fluid filled circular cylindrical shell of radius R, length L, and thickness h. The shell 
is assumed to be made of an elastic, homogeneous, and isotropic material with Young’s modulus E, Poisson ratio ν, and 
mass per unit area M. The axial, circumferential and radial co-ordinates are denoted by, respectively, x, y and z, and the 
corresponding displacements on the shell surface are in turn denoted by U, V, and W, as shown in Figure 1. 
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Figure 1. Shell geometry and coordinate system. 
 

The shell is subjected to a uniformly distributed axial load of the form: 
 

( ) ( )tPPtP o ωcos1+=              (1) 

 
where Po is the uniform static load applied along the edges x=0, L, P1 is the magnitude of the harmonic load, t is time 
and ω is the forcing frequency. 

The nonlinear equations of motion based on the Von Karmán-Donnell shallow shell theory, in terms of a stress 
function f and the transversal displacement w are given by: 
 

xyxyyyxxxxyyh wF
R

wFwFRpwDwwwM ,,,,,,
44

21 2
1 −






 +++=∇+∇++ &&&& ββ       (2) 

2
,,,,

4 11
xyyyxxxx wwww

R
f

Eh
+−−=∇            (3) 

 
where: 
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and ph is the fluid pressure, 
4∇  is the biharmonic operator, β1 and β2 are damping coefficients and D is the flexural 

rigidity defined as: 
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In the foregoing, the following non-dimensional parameters have been introduced: 
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and ωo is the lowest natural frequency of the empty shell. 
 
2.2 Modal Analysis 
 

The numerical model is developed by expanding the transversal displacement component w in series in the 
circumferential and axial variables. From previous investigations on modal solutions for the non-linear analysis of 
cylindrical shells under axial loads (Hunt et al. 1986; Gonçalves and Batista, 1988; Gonçalves and Del Prado, 2002) it is 
observed that, in order to obtain a consistent modeling with a limited number of modes, the sum of shape functions for 
the displacements must express the non-linear coupling between the modes and describe consistently the unstable post-
buckling response of the shell as well the correct frequency-amplitude relation. 

The lateral deflection w can be generally described as (Gonçalves and Batista, 1988): 
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where n is the number of waves in the circumferential direction of the basic buckling or vibration mode, m is the 
number of half-waves in the axial direction, Ry=θ  and Lx=ς . 

These modes represent both the symmetric and asymmetric components of the shell deflection pattern. The first 
double series represents the unsymmetrical modes with odd multiples of the basic wave numbers m and n. The second 
double series represents, besides the asymmetric modes which contains an even multiple of the basic wave numbers m 
and n and rosette modes, the axy-simmetric modes which play an important role in the non-linear modal coupling and 
loss of stability of the shell. 

Previous studies on buckling of cylindrical shells have shown that the most important modes are the basic buckling 
or vibration mode and the axi-symmetric mode with twice the number of half waves in the axial direction as the basic 
mode, that is: 
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The relevance of these modes from a physical point of view is explained by Croll and Batista (1981) and from 
symmetry and catastrophe theory arguments by Hunt et al. (1986). These modes are enough to describe the initial post-
buckling behavior of the shell as well as the topology of the pre-buckling well and the potential barrier connected with 
the unstable equilibrium positions lying on the initial post-buckling path. 

Substituting the assumed form of the lateral deflection Eq. (8) on the right-hand side of the compatibility Eq. (3) 
one may solve the resulting equation for the stress function f in terms of w together with the relevant boundary and 
continuity conditions. Upon substituting the modal expressions for f and w into Eq. (2) and applying the Galerkin 
method, a set of non-linear ordinary differential equations is obtained in terms of modal amplitudes ξ(τ)ij. 
 
2.3 Fluid Equations 
 

The shell is assumed to be completely fluid-filled. The irrotational motion of an incompressible and non-viscous 
fluid can be described by a velocity potential ( )trx ,,, θφ . This potential function must satisfy the Laplace equation, 

which can be written in dimensionless form as: 
 

0
11

,,2,, =+++ κκθθκξξ φφ
κ

φ
κ

φ            (9) 

 

where Rr=κ  and 2Rφγφ = . 

The influence of the nonlinearities is, in terms of the fluid, very small, then we can adopt the fluid as linear. 
Therefore the hydrodynamic fluid pressure will be given by: 
 

( ) ( )ξπθξ msinnmp atth cos,11=           (10) 



  

 
where ma is the additional mass depending on the fluid contained in shell, which is given by: 
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where ρF is the density of the fluid, ρS is the shell material density and In-1 and In are Bessel functions. 
 
3. Results 
 

Consider a thin-walled cylindrical shell with h=0,002 m, R=0,2 m, L=0,4 m, E=2,1x108 kN/m2, ν=0,3, M=78,5 
kg/m2, β1=2εMωo with ε=0,003 and β2=ηD with η=0,0001. The densities ρs=7850 kg/m3 and ρf=1000 kg/m3. For this 
shell geometry the lowest natural frequency occurs for (n,m)=(5,1). 

Now the parametric instability and escape of the fluid-filled cylinder under axial harmonic forcing, as described by 
Eq. (2), will be considered. In the following, the constant part to the loading Γo is assumed to lie between the upper and 
lower critical load in the static case. 

Figure 2 shows the numerically obtained bifurcation boundaries for a slowly evolving system in (frequency of 
excitation, amplitude of excitation) control space for Γo=0,80 and Γo=0,40. The lower stability boundary corresponds to 
parameter values for which small perturbations from the trivial solution will result in an initial growth in the oscillation; 
therefore it defines the parametric instability boundary. The second limit corresponds to escape from the pre-buckling 
potential well in a slowly evolving system. These curves were obtained by increasing slowly the amplitude while 
holding the frequency constant. As one can observe, the parametric stability boundary is composed of various “curves”, 
each one associated with a particular bifurcation event. The deepest well is associated with the principal instability 
region at ω=2ωp, while the second well to the left is the secondary instability region occurring around ω=ωp and the 
other smaller wells to the left are connected with super-harmonic resonances. The horizontal dotted line corresponds to 
the static critical load for this shell. Comparing figures (a) and (b), one can conclude that the static pre-loading has the 
effect of lowering the stability boundaries, of enlarging the width parameters of the instability regions and of shifting 
the instability regions to the left. In both cases the instability boundaries can be much lower than the static critical load. 
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(a) Γo=0,40 
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(b) Γo=0,80 

 
Figure 2. Instability boundaries in control space. 
 

Figures 3 and 4 show typical bifurcation diagrams connected with the principal instability region due to the 
variation of parameter Γ1, for different values of Ω . The bifurcation diagrams where obtained by brute force method and 
in these figures the amplitude ξ11 is plotted as a function of the forcing amplitude, Γ1. 
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Figure 3. Bifurcation diagrams of the Poincaré map for water filled shell. Principal instability region, Γo=0,40. 
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Figure 4. Bifurcation diagrams of the Poincaré map for water filled shell. Principal instability region, Γo=0,80. 
 

The bifurcation diagrams depicted in Figures 3.a and 4.a are typical of the left branch of the principal region of 
parametric instability. In this case, the bifurcation point corresponds to a sub-critical bifurcation of the trivial solution. 
For such sub-critical bifurcations the stability is suddenly lost and the system jumps to another stable solution. This 
leaves a regime where there is no attractor within the pre-buckling well after the critical point is reached and hence an 
inevitable jump to escape under increasing forcing occurs. This explains why in this region the numerically obtained 
parametric instability boundary practically coincides with the escape boundary. 

In Figure 3.b, the jump is indeterminate. The response may re-stabilize within the well or jump to a remote 
attractor. The response that is attained physically depends on the initial conditions. 

The bifurcation diagrams shown in Figures 3.c and 3.d are typical of the right, ascending branch of the stability 
boundary. When Γ1 is lower than the critical value, the only possible steady state solution within the pre-buckling well 
is the trivial one, which is stable. Consequently, the response is trivial. When  Γ1 is greater than a critical value, there 
are two possible steady state solutions: (a) the trivial one, which is unstable; and (b) a finite amplitude period-two (2T) 
solution, which is stable. In this, case, since disturbances are always present, the response is non-trivial. Also, these 
figures show that as Γ1 increases from zero, the response consists of the trivial solution. As Γ1 exceeds the critical value, 
ξ11 begins to increase slowly with increasing Γ1. The critical value is in this case is a supercritical bifurcation point. As 
the amplitude of the forcing increases, the amplitude of the response increases until the escape boundary is reached. 
Before escape occurs, the period-two solution may also become unstable, being followed by a period doubling cascade, 
eventually reaching a narrow zone of chaotic motion, as illustrated in Figure 5. 

Bifurcation diagrams in Figure 4 show a comportment similar to that described in Figure 3 but in this case for a pre-
static load Γo=0,80. 

If the cylinder is subjected to a periodic axial load, it will undergo the familiar longitudinal forced vibration, 
exhibiting a uniform transversal motion, due to the effect of Poisson’s ratio, also know as breathing mode. However, at 
certain critical values, the longitudinal motion becomes unstable and the cylinder executes transverse bending 
vibrations. Figure 5 shows a representative time histories for Γo=0,80. Here oωω=Ω  and ωo is the lowest natural 

frequency of the unloaded shell. A projection of the phase space and Poincaré section and is also shown in these figures. 
These figures were obtained by numerically integrating the equation of motion through the Runge-Kutta integration 
scheme. In Figure 5.a, for a forcing amplitude lower than a critical value Γ1=0,12 and Ω = 0,70, after a finite initial 
disturbance, the amplitude of the response decreases rapidly converging to the trivial solution. In figure 5.b if the 
control parameter Γ1 is increased beyond a critical value, the shell exhibits initially an exponential growth of the 
amplitude, converging to a limit cycle within the pre-buckling well. In this case, the trivial solution becomes unstable 
and the system converges to a period-two stable solution. In Figure 5.c when Γ1 = 0,32 the shell exhibits initially a 
chaotic motion and finally jumps to a post-buckling configuration with a period two- stable solution. If, Γ1 is increased 
still further, Γ1 = 0,45, as shown in Figure 5.d, the shell exhibits a chaotic motion, oscillating about a post-buckling 
configuration. 
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(b) Γ1 = 0,16 
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Figure 5. Time response, phase plane and Poincaré section for Γo = 0,80 and Ω  = 0,70. 



  

4. Concluding remarks. 
 
Based on Donnell’s shallow shell equations, an accurate low-dimensional model is derived and applied to the study 

of the nonlinear vibrations of an axially loaded fluid filled circular cylindrical shell. The results show the influence of 
the modal coupling on the post-buckling response and on the nonlinear dynamic behavior of fluid filled circular 
cylindrical shells. Also the influence of a static compressive loading on the dynamic characteristics is investigated with 
emphasis on the parametric instability and escape from the pre-buckling potential well. The most dangerous region in 
parameter space is obtained and the triggering mechanisms associated with the stability boundaries are identified. The 
results show that the shell may exhibit several types of bifurcations. As a result, the engineer should exercise 
considerable care when designing fluid filled cylindrical shells under axial time- dependent loads. 
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