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Abstract. Multidimensional drying problem in capillary porous media is analytically solved for the associated temperature, 
moisture and pressure content distributions. Luikov's model with linear transport coefficients and two-dimensional plate geometry is 
adopted for the description of the simultaneous heat, mass and pressure transfer phenomena. The generalized integral transform 
technique (G.I.T.T.) is applied to the problem and the automatically global error-controlled solution of the coupled partial 
differential equations is used to achieve the solutions. The convergence behavior of the proposed eigenfunction expansions is 
illustrated. 
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1. Introduction  
 

The system of equations proposed by Luikov (1975) is by far the most frequently adopted in the study of drying 
phenomena in capillary porous media with various applications in the engineering and applied sciences. The integral 
transform method (Cotta, 1993, 1997) has been successfully utilized in the hybrid numerical-analytical solution of such 
problems, for both the linear (Duarte, 1995, 1998, Ribeiro et al, 1993) and non-linear versions (Ribeiro et al., 1995, 
Duarte, 1998), offering the attractive feature of automatic global error control in the final results. Both applications 
were previously considered (Duarte, 1995, 1998, Ribeiro et al, 1993, 1995) and the interest in studying 
multidimensional situations are still increasing, as demonstrated by the finite element method numerical solution in 
Ferguson and Lewis (1993). Therefore, the present contribution bring the integral transform methodology to be 
applicable in multidimensional drying problems, such as the one formulated in Lewis et al. (1996) and Thomas et al. 
(1980), and demonstrates another attractive feature of this class of hybrid method, i.e., the just very mild increase in 
computational effort for increased number of dimensions in the problem (independent variables). Essentially, it is 
reconfirmed that the overall computational cost in implementing the one-dimensional simulation is exactly comparable 
to that of solving the two-dimensional problem here proposed. 

 
2. Analysis  
 

We consider the heat, mass and pressure balance equations written in dimensionless form, for a symmetric plate 
geometry as depicted in Ferguson and Lewis (1993), Fig. (1) subjected to uniform prescribed boundary temperatures, 
moisture and pressure contents, and evaluated from uniform initial distributions (Duarte et al. 1995, 1998). The 
transport coefficients are assumed constant and the problem formulation according to Luikov's theory (Luikov, 1975) is 
given by Ferguson and Lewis (1993):   
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Figure 1 Geometry and coordinate system for contact drying for a moisture porous sheet. 
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and θ1 is the dimensionless temperature distribution, θ2 is the dimensionless moisture content distribution, θ3  is the 
dimensionless pressure distribution. 

Without loss of generality, using the formalisms of the integral transform ( Ribeiro, Cotta, 1993, Cotta and 
Mikhailov, 1993) method the solution for the system of eqs. (1-3) is now proposed in terms of auxiliary problems, 
expressed by three pairs of easily available decoupled eigenfunction expansions of Sturm-Liouville problems, for the 
temperature, moisture and pressure potentials (k = 1,2,3):  
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These auxiliary problems permit the definition of the integral transform pairs that are necessary for the solution of 

the homogeneous problem:  
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The normalizations integrals are, 
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The problem now is to find numerically the eigenvalues ( µki,and λkj), eigenfunctions (Ψki, and Γkj) and norms ( Nki, 

and Mkj ). 
The next step is to find the ordinary differential equation transform system. Using the transform concept in eqs. (1-

25) and the auxiliary problems (26-31,34,35), after truncation to a sufficient order ( i =1 ... I, and j = 1 ... J ) for the 
desired convergence, we obtain, 
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The initial transform conditions are similarly obtained applying the integral transform concept to the initial 

conditions on the homogeneous problem, resulting: 
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Now, this initial value problem can be solved through matrix eigenvalue analysis or scientific libraries. Initial value 
problem solvers with local error control schemes are employed for solving the truncated version of the transformed 



initial value problem. An adaptive procedure is utilized to automatically reduce, along the integration path, the 
truncation orders required for a certain user-prescribed accuracy yielding, as a by-product, a global error estimator.  

At this point, it is possible to write the complete solution to the original problem. Using inversion formulae, 
temperature and moisture potentials can now be numerically obtained as: 
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where Θks are the steady-state solutions, Ψki and Γkj  are the normalized eigenfunctions, and kijΘ  represent the 
transformed potentials, obtained from numerical solution of the resulting ordinary differential system, after the 
completion of the integral transformation process. 
 
3. Results and Discussion 

The Luikov problem as proposed above is now solved using the integral transform technique and the problem 
without pressure potential was exactly solved by substitution of two heat transfer problems (Duarte, 1998). The 
numerical results make it possible an inspection of the overall convergence behavior for the proposed eigenfunctions 
expansions. The governing parameters, according to the data in Lewis (1996), and Cunha et all. (2002), assume the 
following values: ρ0  = 1170,0 Kg.m-3

 , cq = 1.400,0 J.Kg–1.oK-1, cm = 0,03 Kg.Kg-1.oM-1
 , cp = 0,05 Kg.Kg-1.Pa , ε = 0,3,  λ 

= 2,3.106 J.Kg-1, ∆ = 0,67 oM. oK-1 , kq = 576,0 J.h-1.m-1.oK-1
 , km = 3,0.10-6 Kg.h-1.m-1.oM-1,  Kp = 1,5.10-6 Kg.h-1.m-1.Pa-1, 

and the truncation orders, N, were taken less or equal to 12, for temperature, moisture and pressure. The computer 
program was implemented on Mathemtica software (Wolfram, 1996), on a Pentium 700 MHz microcomputer with 
256 Mb of memory RAM, and a typical run took less than 5 minutes of CPU time. 

 The convergence behavior below, Tab. (1), illustrates of the three expansions (different N’s) for temperature (Θ1), 
moisture (Θ2) and pressure potential (Θ3), obtained at the plate centerlines (Y = 0.0) and different X positions. Since the 
heat, mass and pressure transfer processes have, for this problem, markedly different time constants, the values of 
dimensionless time considered in each case, are different. The convergence characteristics are, in both potentials, quite 
evident, with full convergence to four digits to moisture and pressure distribution and three digits to temperature 
distribution being achieved at N as low as 12. Such results open up broad perspectives for extension of this approach 
into even more involved coupled parabolic problems.  

Figures (2-5) show drying process, and the temperature, moisture and pressure distributions are obtained with the 
converged values, and the drying process for temperature and moisture exactly solved. As expected, the material with 
and without pressure variation show a low thermal inertia spending about 0.1 dimensionless time to achieve the thermal 
equilibrium in the most deep layer. The moisture potential present a different behavior in each case, as expected, the 
presence of pressure in the system carriage to deep inside a considerable quantity of humidity mass, allied to thermo-
gradient effect and are needed more than 1500 dimensionless times steps to porous media to meet the moisture 
equilibrium. This effect does not happen with the no pressure model, and the humidity achieving the equilibrium state 
in no more than 55 dimensionless times steps, but in comparison with the temperature potential it characterize a very 
right mass inertia. The pressure, in that case, present a very right inertia, achieving the equilibrium state with 1400 
dimensionless time steps. The different time equilibrium make the difference in O.D.E convergence number, for 
moisture, because the negative pressure work over the material in the same time. Such process create some difficulty to 
the numerical convergence, and of course, to the real drying process, as it take place after 300 dimensionless times 
steps, as can be seen in Fig (4). The drying process can be observed, when the pressure potential reached a half value of 
the prescribed boundary and the temperature is established over the material (τ > 300). 

 
Table 1 . Convergence behavior of temperature, Θ1  moisture, Θ2  and pressure, Θ3 expansions. 

 
Θ1( X,0.0,0.15 )  Θ1(X,0.0,0.03)  

X/N 6 9 12  X/N 6 9 12 
0.0 0.3308 0.3315 0.3309  0.0 0.6482 0.6489 0.6484 
0.2 0.3311 0.3315 0.3311  0.2 0.6491 0.6494 0.6490 
0.4 0.3315 0.3312 0.3318  0.4 0.6548 0.6553 0.6552 
0.6 0.3486 0.3489 0.3489  0.6 0.6895 0.6900 0.6899 
0.8 0.5109 0.5104 0.5104  0.8 0.8027 0.8020 0.8021 
1.0 1.000 1.000 1.000  1.0 1.000 1.000 1.000 

 
 
 
 
 



Θ2( X,0.0,160 )  Θ2( X,0.0,650 ) 
X/N 6 9 12  X/N 6 9 12 
0.0 3.271 3.273 3.273  0.0 1.968 1.968 1.968 
0.2 3.278 3.276 3.276  0.2 1.959 1.959 1.959 
0.4 3.320 3.320 3.320  0.4 1.910 1.910 1.910 
0.6 3.522 3.528 3.522  0.6 1.758 1.758 1.758 
0.8 3.368 3.367 3.367  0.8 1.448 1.448 1.448 
1.0 1.000 1.000 1.000  1.0 1.000 1.000 1.000 

Θ3( X,0.0,200 )  Θ3( X,0.0,450 ) 
X/N 6 9 12  X/N 6 9 12 
0.0 0.2181 0.2181 0.2181  0.0 0.6339 0.6339 0.6339 
0.2 0.2177 0.2177 0.2177  0.2 0.6345 0.6348 0.6348 
0.4 0.2161 0.2161 0.2161  0.4 0.6435 0.6435 0.6435 
0.6 0.2300 0.2299 0.2299  0.6 0.6858 0.6859 0.6859 
0.8 0.4168 0.4168 0.4168  0.8 0.8038 0.8038 0.8038 
1.0 1.000 1.000 1.000  1.0 1.000 1.000 1.000 
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Figure 2. Evolution of temperature profiles during the process. 
 

0.2 0.4 0.6 0.8 1.0
X

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

erutsioM

0.2 0.4 0.6 0.8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

τ=0.60

τ=60.0

τ=35.0

τ=35.0

τ=250

Solution with pressure in red

 
 
 

Figure 3. Evolution of moisture profiles during the process 
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Figure 4. Evolution of moisture profiles during the process 
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Figure 5. Evolution of pressure profiles during the process 
 
4. Conclusion 
 
 In this paper the multidimensional drying problem in a capillary porous media was analytically solved for the 
associated temperature, moisture and pressure distributions, using Luikov´s model. The generalized integral transform 
technique (G.I.T.T.) was applied to the problem and an exact solution was achieved for the no pressure model. 
Convergence behavior of the adopted numerical methods and results of the temperature, moisture and pressure 
distributions showed very interesting aspects of drying process on such porous media. 
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Symbols 
 
am Moisture diffusion coefficient 
cm Specific moisture capacity 
cp Air capacity 
cq Heat capacity 
km Coefficient of moisture conductivity 
kp Moisture filtration coefficient 
kq Thermal conductivity 
θ1 Dimensionless temperature distribution 
θ2 Dimensionless moisture distribution 
θ3 Dimensionless Pressure distribution  
X Dimensionless co-ordinate 
Y Dimensionless co-ordinate 
τ Dimensionless time. 
δ Thermo-gradient coefficient 
λ Latent heat 
ε Ratio of vapor diffusion coefficient to the 

coefficient of total moisture diffusion. 



 




