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Abstract. Rectangular tubes are widely used in heat transfer devices. The objective of this work is to investigate the effects of the 
entropy generation associated with heat transfer and fluid friction by using a computational model. This investigation allows to 
evaluate the entropy generation which is influenced by the temperature distribution in the contour, fluid flow type, properties of the 
fluid and geometric parameters. The study is made for laminar regime, with developed hydrodynamic and thermal profiles. First, 
the model calculates the velocity field, then the energy equation is solved obtaining the fluid temperature field for a given 
distribution imposed in the contour, not necessarily uniform. Known the velocity and the temperature fields, the entropy generation 
per unit volume is calculated. The entropy generation per length unit is calculated by a double integration in the analysed section. 
The computational model consistency is verified by the mesh refining and by the tolerance decreasing. The method validations used 
are done for the velocity and temperature fields calculations. 
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1. Introduction  
 

Thermal analysis of flows inside rectangular ducts is a very important subject of research in thermal science and 
engineering. Literature about the subject is extremely wide, but there are comparatively less Second Law based results 
reported. Second Law analysis is the basis of the so-called "Entropy Minimization Generation Method" (EMGM). This 
method basically consists in searching situations in which thermal processes could be "less irreversible". Examples of 
such studies are given in Bejan (1979), Bejan (1982), Bejan (1996), Gerdov (1996) and Saboya (2002). The EMGM, 
therefore, looks for physical and geometrical configurations in thermal systems that render the inevitable 
irreversibilities associated to heat transfer and. fluid flow to a minimum. This minimization leads to more efficient 
equipment design, allowing fuel saving, lesser pollution, etc. 

The purpose of this paper is the computation of entropy generation rates in fully thermal and hydrodynamically 
developed laminar flows in ducts with rectangular cross sections and nonuniform temperature in wall perimeter. This 
computation gives the necessary information for minimization mentioned above. 

Heat exchangers with rectangular cross sections ducts are widely used in chemical processes industries air 
conditioning and lubrication equipment and other applications, which require compact heat exchangers. The flow, in 
much of these applications, occurs at low velocities and small dimensions, resulting in low Reynolds numbers. Thus, 
the flow tends to be laminar and, because of this, laminar flows will be studied in this paper 

Figure (1) and Fig. (2) show the schematic of the studied duct. L is the duct height, D is its width and the duct 
length is considered infinite. Temperature distribution at the wall duct perimeter is variable. 

dp/dz

section A

 
Figure 1. Perspective view of the rectangular duct studied. 
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Figure 2. Duct cross-section and variable wall temperature distribution schematics. 

 
2. Mathematical Formulation 
 
2.1. Velocity Field 

 
The flow is considered steady, laminar with a fully developed velocity profile. The work due to viscous tensions is 

neglected. Therefore, the only nonzero velocity component is in the longitudinal direction. Let "u" the longitudinal 
velocity, "µ" the dynamical viscosity and "dp/dx" the axial gradient pressure (constant). Thus, the momentum equation 
is: 
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The boundary conditions are zero velocity at the wall (nonslip condition). 
It is useful to define the mean velocity at section with area "A" (see Fig. (1)): 
 

∫∫= dydxu
A

U B ...1
             (2) 

 
Equation (1), with its boundary conditions, was solved numerically using a finite difference method. Details of the 

numerical procedures can be found in Matoso (1998) and Garcia (1996). 
 

2.2. Temperature field 
 
The thermal profile is considered developed. Heat conduction in the flow direction is considered much smaller than 

that in the transversal direction. Natural convection is also neglected. Because the velocity profile is fully developed the 
transversal flow velocities are zero. Hence, the energy equation is: 
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where "Tf" and "a" are the fluid temperature and diffusivity, respectively. 
The fluid bulk temperature is: 
 

∫∫= dydxTu
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With the purpose of defining a dimensionless variable that will become the thermal profile invariant in the 

longitudinal direction (characteristic of developed profiles) it is necessary before to define the mean temperature on the 
duct wall: 
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where “T1”, “T2”, “T3” e “T4” are the temperatures on the surfaces 1, 2, 3 and 4, respectively, as shown in Fig. 1. 
As the wall temperature distributions are invariant in the longitudinal direction "TW" is constant in that direction. 

The fluid will be heated up or will be cooled asymptotically. Therefore the present formulation will be similar to that 
found in Clark and Kays (1953) that studied rectangular ducts with uniform temperatures both in the duct cross section 
and in the longitudinal direction. Making a similar development as presented in the quoted reference, Eq. (3) becomes: 
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To complete the formulation further definitions of dimensionless variables will be needed and it will be presented 

now: 
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where "Dh" the hydraulic diameter for the perimeter “Pe”. The definition of "Dh" is: 
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Substituting Eq. (7) to Eq. (10) into Eq. (6) the dimensionless energy equation is obtained: 
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In Equation (11) “ Bφ ” is the value of “φ ”, defined in Eq. (9), for “Tf” replaced by “TB”, that is: 
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Equation (12) may be rewritten as: 
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Equation (9) gives: 
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Substituting Eq. (15) into Eq. (4) results: 
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Substituting Eq. (16) in Eq. (12), and using Eq. (7) and Eq. (8), it is obtained the dimensionless form of the bulk 

temperature: 
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The dimensionless boundary conditions are: 
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These boundary conditions present a special case that it should be noted. If the temperatures on the walls are 

constant and the same, Eq. (18) to Eq. (21) are equal to zero and they will not be functions of “ dzdTB ”, which is an 
unknown. This simplified case has been studied by Patankar (1991). 

Equation (11), Eq. (12) and Eq. (13), with the boundary conditions, form a differential equation system whose 
unknowns are “φ” and “TB”. The determination of these functions allows the computation of the fluid temperature, “Tf” 
which is needed to calculate the entropy generation. 

 
3. Entropy Generation 

 
The entropy generation rate per unit volume is calculated by means of (Bejan, 1982): 
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According to Clark and Kays (1953): 
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Hence:  
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Integrating over the duct cross-section the entropy generation rate per unit length: 
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4. Numerical Method and Computational Model 

 
The differential equation system described in sections 2 and 3 was solved numerically using a finite difference 

method. The coupling presented between equations and boundary conditions in the heat transfer section of this system 
requires an iterative treatment that will be described bellow. 

With guessed values of “φB” and “dTB /dz” the dimensionless form of energy equation, Eq. (11), is solved. Then, an 
improved value of “φB” is calculated using Eq. (17), forming a first iterative loop, as it is shown in Fig. (3). After the 
convergence of “φB”  a better value of “dTB /dz” is calculated by Eq. (13). The boundary conditions are then 
recalculated and the energy equation is again solved, forming a second iterative loop (Fig. (3)).When convergence is 
achieved, “Tf”  is computed using Eq. (15). Hence, the necessary information to determine the entropy generation rates, 
Eq. 24 and Eq. 25, is obtained. This procedure is schematized in Fig. (3). In this figure "tol" represents the convergence 
criteria for “dTB /dz" and for the dimensionless temperature field. 
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Figure 3 - Computational Model Flowchart. 
 

5. Results and Discussion 
 
Table presents the input parameters of a solution example obtained using the computational model described. The 

fluid is air. 
 
Table 1. Input parameters 
 

Description  Value Unity 
Duct height  0.01 m 
Duct width  0.01 m 
Fluid thermal conductivity  0.0261 W/m0C 
Fluid density 1.1776 Kg/m3

Fluid thermal diffusivity  2.22x10-5 m2/s 
Pressure gradient 16.0 Pa/m 
Fluid dynamic viscosity 1.853x10-5 Pa.s 



  

Figure (4) shows two variable wall temperature distributions investigated. The temperature has been considered as a 
sine function of the position on the wall. This function was chosen because it represents well the numerical method 
capacity to deal with several type boundary conditions. 
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Figure 4. Wall temperature distributions. 
 
Figure (5) shows the velocity field. This field is the same for both temperature distributions because the velocity 

field does not depend on temperature. 
 
 

 

 
 

Figure 5 - Velocity Field. 
 
Figure 6 presents the temperature distributions obtained. It is observed the strong thermal boundary condition 

influence in the temperature distributions. 
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Figure 6 - Temperature Field. 
 
For convenience the entropy generation rate will be presented in two parts. The first one is the entropy generation 

due to viscous flow. It corresponds to the last bracket in Eq. (24). The other bracket represents the entropy generation 
rate caused by heat transfer. 

The entropy generation results due viscous flow are presented in Fig. (7). It is observed that there is little difference 
between the profiles resulting from the two distributions.  
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igure 7. Entropy generation per length unit due to viscous flow. 

he corresponding results for entropy generation rate due to heat transfer are in Fig. (8). Here, as it was expected,, 
ther
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T
e is a strong influence from fluid temperature distributions. 
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Figure 8 - Entropy generation rate per unit length due to heat transfer. 
 
Comparing Fig. (7) and Fig. (8) it is seen that there is little contribution of viscous flow to the total entropy 

generation rate. This is also expected and it is almost a rule in laminar flows. 
 

6. Conclusions 
 
A computational method has been built for entropy generation rates in fully developed laminar flows in rectangular 

ducts. The method allows the imposition of any temperature distribution on duct wall. The model proved to be 
numerically stable and consistent and it is intended to be a tool in engineering design, using the EGMM approach, of 
thermal systems. 
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