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Abstract. The Vortex-induced vibration on a circular cylinder is investigated by the numerical solution of the unsteady Navier-Stokes 
equations and results are compared with experimental measurements obtained by different authors.  The Beam and Warming implicit 
factored scheme is used to solve the governing equations and Large Eddy Simulation is used together with the Smagorinsky subgrid-
scale model (SGS) to simulate the turbulent flow in the wake of the cylinder.  The cylinder is laterally supported by a spring and a 
damper and is free to oscillate in the transversal direction in an initially uniform flow for the first flow speed investigated.  For the 
subsequent speeds, the final condition obtained for the previous speed is used as initial condition to reproduce the actual experimental 
set up.  In that case, the measurements are done by progressive increments of the flow speed retaining the fluid memory effect. The 
complexity and high sensitivity of the flow phenomenon at this configuration requires a very accurate and robust numerical model.  
Most of the known algorithms failed to duplicate the available experimental measurements.  The proposed numerical solution was 
able to provide a good picture of the real physics of the phenomenon showing the Kármán vortex street effects on the lift and drag 
coefficients.  The numerical results for the transversal oscillation amplitude are compared to experimental data showing a fairly 
precise agreement at the difficult to simulate regime of the lock-in phenomenon.  
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1. Introdução 
 

Vortex-induced vibration (VIV) is a direct consequence of lift and drag oscillations due to the vortex shedding.  
When the frequency of vortex shedding coincides with the structural natural frequency, the VIV can occur with high 
dangerous amplitudes that may cause failure of the excited structure.  For a fixed body, the vortex shedding frequency is 
a function of the Reynolds number.  For a moving cylinder, Bearman (2000), the fluid interacts strongly with the 
cylinder motion and the vortex shedding frequency is captured by the body frequency over a wider range of flow speed.  
This is known as lock-in and the extent of this range depends on the structural damping and mass ratio of the cylinder. 

The motivation for the present work is to simulate numerically the experimental work done by Khalak and 
Williamson (1996) measuring the oscillating cylinder amplitude.  In their work, the amplitude of the cylinder oscillation 
was measured imposing a progressive increment of the reduced velocity with the Reynolds number increasing from 
2000 up to 12000.  In this range of Reynolds number, the boundary layer on the body is still laminar, but the wake is 
completely turbulent.  In the present work, the Beam and Warming (1978) implicit factored scheme is used to solve the 
unsteady Navier-Stokes equations and Large Eddy Simulation is used together with the Smagorinsky (1963) subgrid-
scale model (SGS) to simulate the turbulent flow of the wake.  Since vortex stretching strongly dominates the turbulent 
production, the 2D simulation seems to be inadequate for capturing the important scales of turbulent physics.  However, 
3D computation is very expensive and time consuming especially in the study of the VIV phenomenon.  In 2D flow 
there is no vortex stretching so that the transfer of energy mentioned above is not as efficient as in the 3D case.  
Nevertheless, 2D computation is able to produce fairly good results and at the same time it keeps its efficiency 
regarding the time of computation, Flatschart et al (2000).  The numerical solution was able to capture the real physics 
of the phenomenon showing the Kármán vortex street effects on the lift and drag coefficients.  The numerical results for 
the transversal oscillation amplitude compares well to the experimental data showing a fairly good qualitative and quite 
precise agreement of the lock-in phenomenon, where other numerical simulations have failed.   
 
2. Mathematical Formulation 

 
In Large Eddy Simulation (LES), the large-scale turbulence structure is computed directly in the numerical 

simulation and the effects of the small scale structure are modeled using a subgrid-scale (SGS) model.  The governing 
equations are obtained by filtering the Navier-Stokes equations by a local volume averaging.  From Bui (2000), the 
filtered continuity and momentum equations are shown below. 
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(4) 
where the viscous stress tensor τij (i,j=1, 2, 3) is: 
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The bar in the LES equations denotes a filtered or large-scale flow quantity, defined as 
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where G is a spatial filter and the integral is over the flow domain, D.  The tilde in the LES equations denotes a Favre-
filtered (density-weighted) variable, defined as 
 

ρ
ρf

f =
~

 

(7) 
The LES equations are essentially the continuity and momentum equations written for the filtered variables plus the 

additional subgrid terms, Eq. (8), in the momentum equations.  In Bui (2000), for low-Mach numbers, these terms are 
approximated using Eq. (9).  
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The filtered velocity gradient tensor is 
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and 
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(12) 
where c+ is the normal distance from the wall, defined as 

µ
ρ τ cu

c =+  

(13) 



In Eq. (12), the Smagorinsky constant Cso=0.15 is multiplied by the Van Driest damping function to account for 
the wall viscous sublayer.  
 

The LES continuity equation and the definition of isothermal compressibility - Anderson (1990) are shown in Eqs. 
(14) and (15), respectively.  
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According to Wanderley (2001), a Taylor’s series expansion of the density with respect to pressure around p∞ is 

obtained, as in Eq. (16).  Here, only isothermal flows are considered. 
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Combining the definition of isothermal compressibility given in Eq. (15) and the Taylor’s series expansion given in 

Eq. (16), a relation between the density and the pressure is obtained where the isothermal compressibility appears as 
coefficient, Eq. (17). 
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Since τ is very small, it is enough to consider only the first two terms of expansion (17) to express the density in 

terms of the pressure.  After rearranging the resulting expression, Eq. (18) is obtained. 
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(18) 
Substituting Eq. (18) into Eq. (14), results Eq. (19). 
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In the incompressible formulation, where is assumed that τ=0, Eq. (19) reduces to Eq. (20). 
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However, Eq. (20) is very difficult to solve numerically due to the absence of any term of time derivative.  

Fortunately, a more convenient equation can be obtained if the compressibility of the fluids is considered and a 
convenient value for the reference pressure p∞ is assumed.  Observed that Eq. (19) is satisfied also when 
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Therefore, the continuity equation given in Eq. (14) reduces to Eq. (22) with the condition given in Eq. (21).  
Observe that Eq. (22) is much easier to solve numerically than Eq.(20) due to the term of time derivative of the pressure 
that appears in the former equation.  Let’s considerer now the momentum equations given in Eqs. (2), (3), and (4).  The 
substitution of Eq. (18) into the momentum equations will bring an unnecessary complexity to the problem without any 
improvement in precision, since the isothermal compressibility is very small.  On the other hand, the substitution of 
ρ=ρ∞ introduces a convenient simplification of the problem without any degeneration of the momentum equations.  
After substituting ρ=ρ∞ into the momentum equations, Eqs. (23), (24), and (25) are obtained. 
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(25) 
Equations (22) through (25) are very convenient for numerical solution because all of them have a time derivative 

term that facilitates substantially the implementation of any method of time integration.  To solve the problem of the 
flow around a circular cylinder, it is convenient to write Eqs. (22) through (25) in general 2-D curvilinear coordinates,  
in the conservative form, and in the dimensionless form, see Eq. (26): 
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(29) 
where A1, A2, A3, etc. are related to the  metrics of the transformation. 
 

Equation (26) is solved numerically together with the initial conditions, boundary conditions on the body surface, 
and free-stream boundary conditions given in Eqs. (30), respectively:  
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(30) 
The equation of motion of the body is obtained by applying the second Newton’s law to a cylinder of mass (m) 

subjected to lift (L), spring (k), and damping (ζ) forces.  The dimensionless form of the equation of motion (31) with the 



initial conditions (32) is solved simultaneously with the Navier-Stokes equations to compute the velocity )(y�   (it is 

also necessary to impose the no-slip condition on the body), and the position (y) of the cylinder (to place the body at its 
new position to regenerate the grid). 
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3. Numerical Formulation 
 

Central difference schemes require artificial dissipation to improve stability – Pulliam (1986).  The artificial 
dissipation suppresses high frequency oscillations and controls the odd-even uncoupling inherent to central difference 
schemes.  The Von-Neumann linear stability analysis applied to the Beam-Warming central difference scheme shows 
that some artificial dissipation is required to improve stability.  This can be accomplished by adding a fourth-order 
explicit dissipation term to the right-hand side and a second-order implicit smoothing term to the left-hand side, as 
shown in Eq. (34). 
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(35) 
The numerical solution of the flow around a vibrating circular cylinder requires the specification of boundary 

conditions at the boundaries of the physical domain.  The no-slip condition is imposed on the body surface and the free-
stream condition at the external boundary. At the outflow boundary, extrapolation of order zero is used to evaluate the 
properties of the flow at that boundary.  To eliminate reflections, a buffer-zone is specified where disturbances are 
damped away by a weighting function S, according to Eq. (36).  The weighting function gradually suppresses the 
disturbances up to zero at the outflow boundary. 
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(36) 
An algebraic grid generator using the multi-surface method – Fletcher (1988) - is used to generate grid points 

around a circular cylinder.  The grid is constructed such that the body is part of the grid (body fitted grid).  In addition, 
the generated grid is locally orthogonal to the body surface to facilitate the implementation of the boundary condition 
on the body.   In order   to concentrate grid points next to the nose and  body surface, an exponential stretching  is used 
in both stream-wise (ξ) and transversal (η) directions. 
 

The equation of motion is solved simultaneously with the Navier-Stokes equations to compute the velocity y�  and 

position y of the cylinder.  These are necessary to impose the no-slip condition on the body surface and to positioning 
the body to generate the new grid points.  The Lax-Wendroff method (37) and Euler explicit method (38) were used to 
compute the position and velocity of the cylinder, respectively.  In Eq. (39), the lift coefficient CL is obtained from the 
integration of the pressure and skin friction distribution around the cylinder surface obtained from the Navier-Stokes 
previous iteration. 
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4. Fixed Cilinder 

 
Results for Re=40, 100, and 200 are compared with other numerical and experimental data to check the accuracy of 

the obtained results.  An O-grid was generated around a fixed circular cylinder with 120x120 nodes, using stretching 
parameter qη=1.025 in the radial direction.  The distance between the body surface and the external boundary equal to 
20 diameters proved to be enough, see Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Computational Grid in the Physical Domain 
  

Figure 2a shows comparisons between the pressure distribution obtained in the present work and other numerical 
and experimental data obtained from the literature for Re=40.  The agreement is quite remarkable.  Figure 2b shows the 
pressure field and streamlines around a circular cylinder for Re=40.  The pressure map shows the stagnation point in 
violet at the leading edge of the cylinder and the low pressure in blue at the top and bottom of the cylinder.  The 
streamlines show the two vortices attached at the trailing edge of the cylinder due to the separation of the boundary 
layer. 

 
 
 
 
 
 

 
 
 

 
 
 
 
  

   (a)      (b) 
 
Figure 2. Pressure Distribution around a Circular Cylinder for Re=40 (a) pressure distribution on the body surface and 
(b) pressure map and stream lines around the cylinder.. 

 
 

Table 2 shows results obtained for Re=40 for the drag coefficient.  The agreement between the results obtained in 
the present work and other numerical and experimental data is again remarkable.  Moreover, the convergence time 
required by the Beam and Warming scheme to solve the present governing equations is substantial and unprecedently 
low if one considers the type of computer used in the present calculation.  



 
Table 2. Comparison Between Results Obtained by the Present Work and other Numerical and Experimental Data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 compares also results obtained by the present work and other acceptable numerical data for Strouhal 
number, drag, and lift coefficients at Re= 100 and 200.  The agreement is considered good and demonstrates the quality 
of the results obtained by the present formulation. 
 

Figure 4 shows the variation of the lift and drag coefficients as a function of time and Fig 5 shows the pressure map 
and stream lines for Re=100, and 200.  It may be observed that the adopted governing equations are able to represent 
correctly the expected physics of the flow.  For example, for Re=40, the lift coefficient is constant and equal to zero and 
the drag coefficient goes asymptotically to the correct value.  For Re=100, and 200 oscillations take place for both the 
lift and drag coefficients. These oscillations are caused by the asymmetric pressure distribution on the body surface due 
to the vortex shedding known as Kármán vortex street. 

 
 
 

   
 

      (a)              (b) 
 

Figure 4. Time Variation of Lift and Drag Coefficients of a Cylinder, Re =100 (a); 200 (b). 
 

In Figures 5, the low-pressure core that becomes stronger as the Reynolds number increases may identify the 
vortices that are transported by the mean flow.  It is interesting to point out the oscillating pattern of the streamlines in 
the wake of the cylinder caused by the presence of the vortices.  In addition, the streamlines oscillate at the same 
frequency as the vortex shedding.   
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(a)               (b) 
 

Figure 5. Pressure Field and Streamlines Around a Circular Cylinder for Re=100 (a); 200 (b). 
 

5. Moving Cylinder 
 

Figure 6a shows the physical situation of interest.  A circular cylinder of mass m subjected to an incident uniform 
flow, and supported by a spring and a dumper.  The same mass and dumper coefficients used in Khalak and Williamson 
(1996) were used in the present investigation.  These are Cµ=1.88 and Cζ=5.42x10-3, with the reduced velocity varying 
from 2 to 12 proportionally to the variation of the Reynolds number from 2000 to 12000.   

 
An O-grid is generated (in each iteration) around a vibrating circular cylinder with 120x200 nodes, using stretching 

parameter qη=1.025 in the radial direction.  The distance between the body surface and the external boundary equal to 
60 diameters proved to be enough. 

 
      

 
 
 
 
 
 
 
 
  
 
 
 
 

   (a)       (b) 
 
Figure 6.  (a) An Illustration of the Physical Situation of Interest and (b) the Amplitude of Oscillation as a Function of 
Reduced Velocity 

 
Figure 6b shows the amplitude of oscillation as a function of the reduced velocity obtained in the present work and 

other numerical and experimental data from the literature for comparison.  Figure 6b shows that our mathematical and 
numerical formulations were able to capture the upper and lower branch reported in Khalak and Williamson (1996) 
(shown in Fig. 6b as red diamonds).  Moreover, the numerical results obtained are much closer to the experimental data 
than other numerical results. 
 

Figures 8a,b show results obtained for the transversal displacement of the vibrating circular cylinder as a function 
of time.  It is considered the time trace in two regions: in the build-up of the upper branch and at the top of the upper 
branch.  The reduced velocities of Ur=4.5 in Fig. 8a and Ur=6.0 in Fig. 8b correspond to the build-up and top of the 
upper branch, respectively.  The displacement agree well qualitatively with those data from Khalak and Williamson 
(1996) regarding the observed combination of frequencies.  

 



   
(a) (b) 

 
Figure 8. Transversal Displacement of the Circular Cylinder for (a) Ur=4.5 and (b) Ur=5.5. 
 

Figures 9a,b show results obtained for the transversal displacement of the vibrating circular cylinder as a function 
of time.  It is considered the time trace in two regions: in the  lower branch and in the declining region away from the 
lower branch.  The reduced velocities of Ur=8.0 in Fig. 9a and Ur=12.0 in Fig. 9b correspond to the lower branch and 
the declining region away from the lower branch, respectively.  According to Khalak and Williamson (1996), the 
response in the lower branch is very periodic and looks like a pure single frequency.   In Fig. 9a of the present work, it 
is not observed a single frequency, but a combination of frequencies.  On the other hand, Fig. 9b seems to agree 
qualitatively with the experimental data regarding the no uniform amplitude and the overall lower response.  
 

    
              (a)           (b) 

 
Figure 9. Transversal Displacement of the Circular Cylinder for (a) Ur=8.0 and (b) Ur=12.0.  
 
6. Conclusions 
 

The motivation for the present work was to duplicate through numerical simulation the experimental results 
obtained by Khalak and Williamson (1996) for the vortex-induced vibrations of a circular cylinder.  To check the good 
quality and efficiency of the algorithm, results were obtained for the fixed cylinder and compared to other consecrated 
data before applying on the vibrating cylinder problem.  
 

The results for the fixed cylinder agree very well with those obtained through other reliable methods for solving the 
incompressible Navier-Stokes equations.  The time required for convergence using the Beam and Warming implicit 
scheme proved to be lower than other known methods for the solution of the incompressible Navier-Stokes equations.  
The numerical solution provided a good picture of the real physics of the phenomenon showing the Kármán vortex 
street oscillation of the lift and drag coefficients due to the asymmetric pressure distribution around the cylinder. 

 
  The results obtained for the vibrating cylinder agree very well with those experimental data obtained from the 

literature not only quantitatively, but also qualitatively in the upper branch.  In the lower branch, the poor quantitative 
agreement  seems to be related to the insufficient grid refinement for the higher Reynolds number of that flow regime.  
The present mathematical and numerical formulations were able to capture the upper and lower branch of the 
amplitudes of oscillation reported in Khalak and Williamson (1996).  The variation of Reynolds number with the 
reduced velocity seems to have a significant effect on the amplitude of oscillation.  Possible explanations for the good 
performance of the present formulation to simulate the VIV phenomenon are listed below: 

 
 



• The governing equations are in the conservative form; 
• The numerical efficiency of the algorithm permitted to obtain a wider number of cycles of oscillation in 

a permissible time of computation giving a much better view of the VIV phenomenon; 
• The distance from the body surface to the external boundary of 60 diameters; 
• The buffer zone extending from 30 to 60 diameters to eliminate possible reflections of perturbations in 

the external boundary that could effect the flow around the body; 
• The variation of the Reynolds number with the reduced velocity to reproduce the real experimental 

procedure in Khalak and Williamson (1996);  
• The use of a no dissipative scheme with the explicit addition of artificial dissipation allowing the control 

of the dissipation level.      
   

Finite difference method can be a quite powerful tool to study vortex-induced vibration of offshore structures.  It is 
a versatile method that allows an accurate and reliable identification of the flow characteristics around the body 
including the intensity, location and frequency of the vortex shedding in the wake necessary to investigate the induced 
vibration phenomenon.  Further investigation will include the use of finer grid to improve the results in the lower 
branch, analysis of three-dimensional effects on the induced vibrations.  Other applications that can be handled by the 
finite difference method may include the shadow effects, multi-body dynamics among other problems of interest in 
offshore engineering.    
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