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Abstract. The stress model of the hybrid-Trefftz element formulation is applied to the elastoplastic analysis of solids. 
The stresses are approximated in the domain of the element and the displacements and plastic multipliers are 
approximated on its boundary. Harmonical and orthogonal hierarchical polynomials are used in stress approximations 
functions, constrained to solve locally the Beltrami governing differential equation, derived from the associated 
Papkovitch-Neuber elastic displacement solution. Dirac functions defined at points on the boundary of each element 
approximate the plastic multipliers. The finite element equations are derived directly from the structural conditions of 
equilibrium, compatibility, and constitutive relations of the elasticity and plasticity. The non-linear governing system is 
solved by Newton method. The resulting Hessian matrices are symmetric and highly sparse. All the intervening arrays 
are defined by boundary integral expressions or by direct collocation. Numerical applications are presented to 
illustrate the performance of the model. 
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1. Introduction 

 
The formulation previously proposed in references 1, 2 and 13 for the analysis of three-dimensional elastoplastic 

problems is based on the independent approximation of three fields: stresses and plastic multipliers are approximated in 
the element domain and displacements on its static boundary. The stress basis developed in these references for the 
elastic analysis has shown a good performance in the analysis of tridimensional solids: low sensitivity to geometric 
irregularities, low sensitivity to mesh distortion, no locking in the incompressibility or near incompressibility regime and 
good estimates for stresses and displacements. The implicit Euler backward stress integration and the Newton-Raphson 
method applied to the elastoplastic analysis3 has shown robustness, reliability and good estimates for collapse loads and 
displacements2,13. But important areas where the plastic criterion was corrupted have been reported. 

This paper reports on the application of the hybrid-Trefftz hexahedral stress element to the elastoplastic analysis of 
solids. The general aspects of the formulation proposed in 1,2 and 13 remain unchanged, but a new set of collocation 
points used in the plastic control is presented. Plastic multipliers are now approximated on its static boundary.  

A polynomial basis for the stresses is derived from Papkovitch-Neuber potentials, that renders an homogeneous 
solution from Navier equation for stress. This polynomial basis is complete to sixth-degree, with 186 degrees of 
freedom. The generation of this basis is complete, but presents some spurious modes, which were detected and removed.  

The resulting Hessian matrices are symmetric and highly sparse. All intervening matrices and vectors are either 
defined by boundary integral expressions, which is typical of the Trefftz approach, or computed from direct collocation, 
as a result of the Dirac approximation of the plastic multiplier field. 

Several applications of Trefftz approach display the efficiency on non-linear problems4,5,6,7,8,9,11,12. 
 

2. Fundamental relations 
 

Let V denote the domain of a typical finite element and Γ is its boundary. Let Γu e Γσ denote the cinematic and static 
boundaries ( ∅=Γ∩ΓΓ∪Γ=Γ σσ uu ;  ). The governing equations are: 
     0D ====σσσσ      in V (1) 
     u D*====εεεε    in V (2) 
     ΓtN ====σσσσ     in Γσ (3) 
     Γuu ====       in Γu (4) 
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In the equilibrium and compatibility conditions (1) to (4), u is the displacement vector, and vectors σσσσ and εεεε collect 

the independent components of stress and strain tensors, respectively. D is the differential equilibrium operator, and N is 
the boundary equilibrium matrix that collects components of the outward normal vector to Γ . D e D* are adjoint 
differential operators. Body forces and residual stress are not taken on account, for simplicity. tΓ e uΓ are vectors that 
collects the Cauchy tractions (in Γσ) and prescribed displacements (in Γu), respectively.  

The decomposition of the strains into elastic and plastic parts is given by 

     pe εεεε++++εεεε====εεεε    in  V   
 

(5)

while the elastic relation in terms of the flexibility matrix f  can be written by  

     σσσσ====εεεε fe         in V  (6)
 
The plastic flow rule, the normality rule and the Kuhn-Tucker complementarity relations are defined respectively as: 
 

    )(n p σσσσ====εεεε λDD  in V (7) 

    
σσσσ
σσσσ====σσσσ

∂
∂ )F()(n  in V (8) 

     0≥λD and 0)(F =λσ D  in V (9) 
 
where λ  is the plastic multiplier, n(σσσσ) collects the outward normal vector to the yield surface and F(σσσσ) ≤ 0 is the yield 
function. 
 
3. Finite element approximations 
 
3.1. Finite element approximations for elasticity 

 
The formulation presented is based on the direct and independent approximations of stresses components in the 

domain of the element, increments of plastic multipliers in the domain and on the boundary of the element as well, and 
the displacements on its static boundary, as shown by expressions (10), (11) and (12) below 

 
     X S=σσσσ         in  V (10)
     ** e E=∆λ     in  V and in Γ  (11)

      u=Zq            in Γσ (12)
 
where S, E* and Z are matrices that collect the approximation functions. Vectors X, e* e q are the corresponding 
weights. 

Displacements in the domain of the element can be obtained from the stresses. Equations (2) and (6) lead to 

     ukD*=σσσσ    in  V (13)

Let u=UX+ur be the displacements in the domain of the element, where ur collects the rigid-body displacements and 
U collects the approximation function related to S, hence 

     UkDS *=    in  V (14)

 
Trefftz constraint consists on the choice of approximation functions that solve, a priori, the Navier equation. 

Equations (1), (2) and (6) lead to the Navier equation (15), where k=f -1 , 
 

     0uDkD =*    in  V (15)

 
3.2. Stress and displacements approximations in the domain 

 
The associated elastic displacement basis U associated with the direct stress approximation is derived from the 

Papkovitch-Neuber solution given by (16) below 

     )r()1(4UG2 t φ+ψ∇+ψν−−= , (16)



 
where ψψψψ  e φ are vector and scalar harmonic polynomial displacement potentials, respectively, and r is the position 
vector and ∇  the gradient operator. The following potentials were used 
 

      )(Pr kn
nL

k ξ=ϕ , (17)

     )exp( r k
n
kk θ=φ     and (18)

     )exp( rx k
n
kkk θ=ϕ , (19)

where Pn is the n-th associated Legendre function, 2
3

2
2

2
1 xxxr ++= , 2

j
2
ik xxr += , 4/  ),/xarctan(x kijk π≤θ=θ  

and /r xkk =ξ . L
kϕ  potentials and real terms of (18) e (19), when n is an integer, are polynomials, when even 

permutations of  i,  j and k are assumed.  
The fifteen real functions above, applied to (16), generate 60 polynomial approximation stress functions for each 

degree n. The Papkovitch-Neuber solution is complete, but linearly dependent modes are generated, and then eliminated 
by the numerical linear system solver. As it shown in reference 1, the stress approximation basis, defined by equation 
(14), is self-equilibrated and described by 186 complete, linearly independent polynomial stress modes of sixth degree. 
Higher degrees are possible, but incomplete basis weree generated. For 7th , 8th and 9th degrees, for example, the stress 
basis have 237, 294 and 357 independent modes, with deficits of 6, 16 and 31 modes to be completed. 
 
3.3. Displacements approximation in the static boundary 

 
The static boundary displacements are approximated by independent hierarchical polynomial bases, following the 

Pascal’s Triangle scheme in a local coordinate system assigned to each face of the master element.  
For a n-th displacement approximation degree, zn  independent displacement modes are generated. zn  is given by 

     [ ]2)1)(n(n2/13nz ++= . (23)

 
3.4. Plastic multipliers approximation 

 
The plastic multiplier increment (11) is approximated by Dirac functions )x(δ

K

: 

     [[[[ ]]]]������������������
����

KKK

====E , (24)

where the vector *e  collects the plastic multipliers at points N21 x , ...  , x , x . Hence one has 

     [[[[ ]]]]t
*e ������������������������

���
(((==== . (25)

Preliminary tests have indicated that Gauss quadrature points provide a good choice for the control of the plastic 
deformation.  

Two sets of Gauss quadrature points are tested here. The first one is defined in the domain of each element2,13. If N 
is the number of quadrature points chosen for the finite element analysis at each direction, then N3 points for each 
element perform the basis for the plastic control. 

The second set is defined on the boundary of each element. Each element face has N2 collocation points, then  6N2 
points for each element are used in the plastic control. 

 
4. Finite element equations 
 
4.1. Virtual Work equations 

 
With the aid of the virtual work equation  

     (((( )))) (((( ))))∫∫∫∫∫∫∫∫∫∫∫∫ ΓΓΓΓσσσσ++++σσσσ====εεεεσσσσ
u

d  d  dV tt

V

t

ΓΓ

ΓδΓδδ
σ

uNuN , (26)

it is possible to derive the following discrete equation 

     vSqAXF ====εεεε++++−−−− ∫∫∫∫
V

p
t dV   , (27)



 
where 
     dV   

V

t∫∫∫∫==== SfSF , (28)

     ∫∫∫∫====
σΓ

Γd )( t ZNSA    and (29)

     ∫∫∫∫====
u

d )( t

Γ

Γ ΓuNSv . (30)

As shown in reference 1, the equivalent boundary integral expression (28) for the symmetric flexibility matrix F can 
be obtained by boundary integration, since a self-equilibrated stress approximation basis is used, as follows 
     ∫∫∫∫

ΓΓΓΓ

ΓΓΓΓ==== d)( t uNSF . (31)

On the other hand, the equilibrium condition 
    ∫∫∫∫∫∫∫∫ ====σσσσ

σσ Γ

Γ

Γ

ΓδΓδ dd  tt tuNu  (32)

leads to 

     QXA t −−−−====−−−−   , (33)

with 
    ∫

σΓ

Γ Γ= dtZQ t . (34)

 
4.2. Plastic Strain Time Discretisation 
 

The load is supposed to be applied in N  time steps [ti,ti+1]. At instant ti the displacements, stresses and plastic strains 
are assumed to be known. At instant ti+1 the applied loads or displacements are known. With relations (27), (33) and 
plastic condition F(σ) ≤ 0 at instant ti+1, the following non-linear system is obtained 
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(35a)

(35b)

(35c)

The plastic strain increment in time step [ti,ti+1] is 

     ∫∫∫∫∫∫∫∫
++++++++

====εεεε====εεεε
1i

i

1i

i

t

t

t

t
pp dt      dt nλ∆ >> , (36)

where ppp i1i
ε∆+ε=ε

+
. The implicit backward Euler integration of the above relation (36) leads to 1ipp n 

i1i +∆λ+ε=ε
+

. 
After combining it with (35a), one has 

     
ip1i

V

1i
t

1i1i dV  evnSqAXF −−−−====++++−−−− ++++++++++++++++ ∫∫∫∫  ∆λ   , where (37)

     ∫∫∫∫ εεεε====
V

p
t

p dV
ii

Se . (38)

The combination of (11), (37) and (24) leads to 

     **

V

1i
t dV eNnS ====∫∫∫∫ ++++  ∆λ , (39)

     ∫∫∫∫ ++++====
V

*1i
t

* dV  EnSN    and (40)

     ))]((  )(   ,   ...   ,   ))((  )(   ,   ))((  )([ 1i
t

21i2
t

11i1
t

* NN xnxSxnxSxnxSN σσσσσσσσσσσσ==== ++++++++++++  (41)

 
The weighted form of the yield condition at instant ti+1 is given by  



 

     0dV )(F
V

1i =σ  δ∆λ∫ + , (42)

which, with help from (11), leads to 

     0dV )(F
V

1i
t
* ====σσσσ∫∫∫∫ ++++  E  (43)

 
The resulting equation system at instant ti+1 is presented below 
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(44a)

(44b)

(44c)

4.3. Non-Linear System Solution 
 
Non-linear system (44) can be recast in the following residual form  
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(45a)

(45b)

(45c)

The system above can be solved by the Newton-Raphson Method. The resulting linear system, which must be 
solved in each iteration j is:  
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System (46) is symmetric and highly sparse. Matrices M* and N* as well as vector ep collect information about the 
so called active collocation points xk . These are the points for which at the end of each time step one has F(σσσσi+1(xk)) ≥  
0 . On the other hand, inactive points, for which F(σσσσi+1(xk))<0 , are not represented in the system (47). Which collocation 
points are active at the end of each time step are not known. The discussion of this issue is left for section 4.5 below.  
 

Stresses, displacements and plastic strains at instant ti+1 can be calculated by 

     1i1i ++++++++ ====σσσσ SX  (49)

     1i1i ++++++++ ==== Zqu  (50)

     1i
e

1i  ++++++++ ====εεεε SXf  (51)

 
The solution procedure used is the Active Point Method: a set of active points (points with F(σ) ≥≥≥≥ 0) is assumed and 

the Newton-Raphson method is applied. The inactive points, for which F(σ)<0, are not represented in system (46). After 
each iteration of the Newton-Raphson, all collocation points are evaluated, and a new set of active points is established 
to perform the next iteration. After the convergence, F(σ) ≤≤≤≤ 0 for every collocation point. This procedure is a variation 
of the so-called Active Set Method: in this method a set of active points is assumed and the Newton-Raphson method is 
applied. After the convergence, the set of active points is updated, and the Newton-Raphson method is restarted until the 



 
active set is stabilized. The Active Point Method proved to be much better than the Active Set Method in terms of the 
overall number of iterations and stability13.  

An alternative method of controlling the load step was implemented. Variable load increments are applied by 
imposition of an arbitrary increment of internal work2,12. 
 
5. Numerical applications 
 

Two structural elements are used to test the application of the three-dimensional hybrid-Trefftz stress element. The 
results presented below are directly extracted from the references mentioned or estimated from the graphs presented 
there when tabulated values are not available. The solutions reported for the hybrid-Trefftz stress element are those 
directly computed. No smoothing is used in stresses and displacements.  

Neither the formulation nor the approximation bases used here constrain the geometry of the finite element, which 
may be not convex or multiple connected. However, and for simplicity, only one master element is tested in this report, 
namely the right 8-node hexahedron. The shape functions adopted in the mapping operations typical of isoparametric 
elements are used here only to support the geometric transformations, as the finite element approximation is 
implemented on the independent stress and boundary displacement bases described above. 

In the tests below, the global scaling is based on three parameters, namely, a length scale Ls, a yield stress scale, Ys, 
and a Young modulus scale, Es, which are identified as the largest values found for these parameters in each application. 
Thus, the scaled values that replace the actual tractions q, displacements u and plastic multipliers *ε  are the following: 

 
Y
q=λ       ;     

YL
uE

s

s=δ      ;      
Y

E *sε=π  

For simplicity, in all tests a perfect plastic behavior is assumed, with von Mises yield criterion, with yield stress Y. 
Several hybrid-Trefftz stress elements HTS(dσ,duΓ,Np) are used in each test, namely, dσ is the stress approximation 

degree and duΓ is the displacement approximation degree at static boundaries. Np is the number of collocation points in 
each direction, say: a) x, y and z, if collocation points on the domain are used; b) ξ1 and ξ2 (local axis on each face of  
hexahedron) if collocation points on the boundaries are used. The total of collocation points in each element is either 
(Np)3 or 6(Np)2 for domain and boundaries cases, respectively. 
 
5.1. Clamped beam tests 

 
The first set of tests is implemented on the beam fixed at its ends, subject to a uniform transverse load q, shown in 

Fig.1. The length Ls=L, the yield stress Ys=Y and the Young modulus Es=E are taken as scaling parameters, and the 
Poisson ratio used is ν=0.2.  

Five sets of Hybrid-Trefftz stress elements are used, namely HTS(6,3,2), HTS(6,3,4), HTS(6,3,6), HTS(7,3,6) and 
HTS(8,4,6). These elements have shown best performances in elastoplastic analyses2,13.  Three, four and five-element 
meshes are defined in the same figure.  

The convergence of the corresponding load-displacement diagrams is presented in Figs. 2, 3 and 4. The 
displacements δ are the vertical displacements at the centre of the lower face, at midspan. The loads λ are compared 
with Plastic Hinge Theory limit load λr =0.16. 

As expected, p-refinement is more sensitive in three-element mesh than in the four and five-element meshes. The 
best HTS solutions are compared in Fig. 5 and in Table 1. Np-refinement induces lower collapse load. 

 

 
Figure1. Elastoplastic analysis of  beam: a) geometry b) meshes. 
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Figure 2. λ-δ diagrams (3-element mesh)                                     Figure .3. λ-δ diagrams (4-element mesh) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. λ-δ diagrams (5-element mesh)                                       Figure 5. λ-δ diagrams for the beam 
 

 
Mesh lement 

3 elements 4 elements 5 elements 
HTS(6,3,4) 0.147 0.169 0.160 
HTS(6,3,6) 0.144 0.159 0.154 
HTS(8,4,6) 0.167 0.167 0.159 

Table 1. Collapse load estimates of the beam at δ = 2.0 
 

 
Figure 6. Von Mises stress distributions in the beam at δ = 2.0 
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5.2. T-beam tests 
 
A T-short-beam, fixed at z=0, subject to a uniform transverse load q, is shown in Fig.7a. This loading produces 

bending, shear and torsion in the beam. The length Ls=L, the yield stress Ys=Y and the Young modulus Es=E are taken 
as scaling parameters, and the Poisson ratio used is ν=0.2. The 8-element mesh (Fig.7b) is used in Trefftz element tests.  

 
  

 
 

 
 
 
 
 
 
 
 
 

Figure 7. T-Beam. a) geometry and loading; b) 8-element mesh ; c) 1224 element-mesh 
 

The convergence of the corresponding load-displacement diagrams is presented in Fig.8. The displacements δ are the 
vertical displacements at point A. HTS(7,3,4) Hybrid-Trefftz stress elements are used in both sets of collocation points 
presented. These results are compared with the 8-node element (HEXA8) of MSC/Nastran10, with a regular 1224-
element mesh (Fig. 7c), and summarized in Table 2. Any volumetric locking was observed. Sparsity found in the 
Hessian matrix for the HTS(7,3,4) element was 97% at δ=85.  
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Figure 8. Load-displacement diagrams for the T-beam 

 
 

Element Collapse Load DOF 
HEXA8 0,165 5100 

HTS(7,3,4) Domain 0,159 3083 
HTS(7,3,4) Boundary 0,160 3085 

Table 2. Collapse load estimates and Degrees of Freedom at δ = 85 
 

These three tests were executed in a PC (1.50GHz), and the processing times were about 4, 4 and 5 minutes, 
respectively. The deformed T-beam, at δ=38, with HTS(7,3,4) 8-element mesh, with plastic control on the boundaries, is 
illustrated in Fig. 10. Gray lines are printed to make displacements easier to be visualized. It can be seen that continuity 
between boundaries are in general preserved, except in the corner between the loaded surface and the clamped surface. 

The deterioration of yield condition is analyzed in Fig. 10, for the 8-element mesh. The legend vanishes from blue 
(σVM/Y=0) to red (σVM/Y=1), where σVM  is Von Mises stress. The areas where plastic criterion is corrupted (σVM/Y>1) 
are printed in black. In the domain plastic control, a large corrupted area is printed. At some points the ratio σVM/Y is 
greater than 3. For collocation points on the boundary, the corrupted areas are very smaller, and there are no points with 
the ratio σVM/Y greater than 1.1. 
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Figure 9. Deformed T-beam at δ=38 
 
 

 
Figure 10. Von Mises stress distributions in the beam at δ = 38 

 
6. Closure 

 
The results reported above indicated that Gauss quadrature points on element boundary provide a good choice for 

the control of the plastic deformation for hybrid-Trefftz stress formulation. 
The local deterioration of the yield condition presented in [2,3,13] was minimized by controlling the plasticity 

criterion on boundary collocation points, where the highest Von Mises stresses are known to develop. 
The used algorithms have proven to be robust and capable of exploiting the accuracy offered by the hybrid-Trefftz 

finite element model. 
On the other hand, the p-refinement procedure seems to be restricted. To exploit fully the p-hierarchical nature of 

the formulation it is necessary to enrich the stress approximation bases. 
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