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Abstract. In this paper, we analyze a simple portal structure  with two degrees of freedom which mathematical model has quadratic
nonlinearities. The non-linear planar vibrations of this structure are of great interest in  Engineering. By using Center Manifolds,
we investigate the stability of the equilibrium point in the origin, as well as the existence of the phenomenon of  bifurcation. In view
of experimental studies done before, by a number of authors,  the actual analysis shows that the vertical damping plays the most
important role in the dissipative part of this system. When there are forced oscillations, and in the presence of the horizontal and
vertical damping, we have the existence of  asymptotically stable periodic orbits.
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1. Introduction

 An analytical study of nonlinear vibrations of a simple machine portal frame foundation is presented in this paper.
The portal frame studied here is similar to another one previously analyzed for support excitations see: Barr and
Macwannell (1971). The goal of this paper is to discuss some theoretical and rigorous aspects of previous works that
were obtained for a single motor foundation see Brasil and Mazilli (1990). Some extensions of this kind of problem
were done by a number of authors Brasil (1996), Brasil and Mazilli, (1993) and Brasil and Mazilli (1995)). Brasil and
Mazilli (1993). These authors analyzed this model, by using the Andros program that was implemented by these
authors. We notice that: these results were, in good accordance, with the results obtained before, by using perturbation
methods, studied before by Nayfeh and Mook (1979). We also remarked that this theory was used in several other
nonlinear analysis, see Brazil and Mazilli (1995).

Here, the portal frame of Figure 1 is considered in the analysis. We take into account a structural system defined by
two elastic columns of same h  height, clamped in their bases. On each free extremity from these columns, a mass m  is
leaned on. These columns have constant cross section of cI  moment of inertia. A horizontal elastic beam of L  length is
pinned to these masses. This beam has constant cross section of bI  moment of inertia. This structural system consists of
a linear elastic material which Young modulus is E . Geometric nonlinearities are introduced by considering the
shortening due to bending of the columns and of the beam, that is  quadratic type, Brasil and Mazilli (1990). Besides, a
body of mass M  is supported in the middle point of the horizontal bar. . Of course, the non-linear planar vibrations of
this structure are of great interest in Engineering. Under the earlier assumptions, the motion equations of the mass M
are deduced, as we see in Brasil and Mazilli (1990), Balthazar et all. (1997), Brasil and Balthazar (2002). . We mention
that the coordinate 1q  is proportional to horizontal displacement and 2q  is proportional to vertical displacement, see
Fig. (1).

 Next, taking into account that the potential energy and kinetic energy were expanded to cubic terms, the
Lagrangian equations of motion, are the following ones (see, for an example: Brasil and Mazilli, (1995)):
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where
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g  is the acceleration of gravity and 2ω  is a natural frequency  of the system.
 Here, in view of (2), we assume that the parameter 1k  can be taken as positive or negative. Later, we will show

that, the changes of the signal of the coefficient of 1q  will play an important role in proof of the existence of
bifurcations. 21 C,C  are the coefficients of viscous damping. We also mention that Palacios et. alL., and (2002) used
nonlinear saturation phenomenon and internal resonance in order to obtain a control of the vibrations of the portal frame
model that was defined by Fig. (1).   They showed that the steady state vibration could be controlled and they proved
that this kind of control technique was efficient and robust.

We remarked that the goal of this paper is to investigate some questions about stability and bifurcation of  (1). It is
clear that all of them depend on the coefficients 21 ,µµ . Therefore, we examine four distinct cases:
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Figure 1. A Portal Structure



Unexpectedly, from the qualitative viewpoint, cases 1 and 2 are both similar. However, case 2 has a decaying rate
of some quantities that suggests that there is a better agreement with experiences than case 1. In case 3 we prove that
there are stable periodic solutions of (1). From experiments see Brasil et all (2002), there is no periodic behavior, so we
will discard such possibility. In case 4, a simple change of variables shows that (1) is a Hamiltonian system

 So, away from resonance, there is a handful of periodic orbits close to the equilibrium point. According to the
experimental evidence, that was done by Brasil et all (2002), we may conclude that this dynamic behavior is not
acceptable. We also proved that in all cases there is bifurcation, which happens due to the action of the gravitational
field.

If we taking into account the portal structure subject to forced oscillations, the equation of motion is given by
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where B,A  are constants.  Here, we will prove that if condition 1 holds, then (3) has periodic solutions and in this case,
there is a bifurcation (where these solutions change its stability). We remarked that this problem was investigated
before, in aspects different from those analyzed here.

2. Preliminaries

Making  ,
L

g
qq 2

2
32 ω

−=  (1) may  be written as
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where 
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−=  . Taking new variables, defined by 3311 qv,qu,qy,qx && ====  , we will obtain from (4) that
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 Note that, the equilibrium points ( )0000 v,u,y,x  of  (5) are exactly ( )0,0,0,0  and 
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 if 0k > .

In addition, ( )0,0,0,0 is the unique equilibrium point if 0k < . By using the Hurwitz Criterion, see Meirovitch (1970), it
is easy to obtain the following result.

Proposition 1. a) If 0k <  then ( )0,0,0,0  is an unstable equilibrium point of (5).

b) If 0k >  then 
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 are unstable equilibrium points of (5).

  Next, we will show that the dynamical behavior of the system, in the equilibrium point ( )0,0,0,0 , changes
according to the signal of k .

3. Case 0,0 21 >> µµ

If  0k > , all of the eigenvalues of  (5) have negative real parts, then ( )0,0,0,0  is an asymptotically stable
equilibrium point.  If 0k = , the expressions of the eigenvalues of  (5) are given by
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 Note that, Since 0  is an eigenvalue, we will use the center manifold approach as it was given in Carr and Al-Amood
(1980).

Making the following change of variables wy,
wz
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in (5), we will obtain that
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 We obtain that the center manifold of (6) is the graph of a mapping ( ) ( ) ( )( )zr,zq,zpz →  near 0 , where
( ) ( ) ( ) ( ) ( ) ( ) 00r0r0q0q0p0p =′==′==′=  and ( ) ( ) ( )zrv,zqu,zpw === . Hence, the center manifold, (6) may be

written as

( )( ) ( )zqzpzz
1

1 −−=
µ
α

& .                                                                                                                                               (7)

 Now, we need to find an approximation of q,p  and r . For this, we will use the Theorem 3 of Carr and Al-Amood
(1980). Letting
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where ( )r,q,p=ϕ . In addition, taking ( ) ( ) ( ) 222 Czzr,Bzzq,Azzp ===  in the earlier equation, we will obtain that
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So, if 2
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Hence, 0  is an unstable equilibrium point of (10).  By using Theorem 2 of Carr and Al-Amood (1980) we will obtain
that ( )0,0,0,0  is an unstable equilibrium point of (6).

If 0k < , it follows from Proposition 1 that ( )0,0,0,0  is an unstable equilibrium point.

In summary, we remarked, that by one hand if 
g

Lk 2
21

1
ω

α < , then ( )0,0,0,0  is an asymptotically stable equilibrium

point and by another hand, if 
g

Lk 2
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1
ω

α ≥  this point is an unstable equilibrium point.



4. Case 0,0 21 >= µµ

If 0k > , the eigenvalues of  (5) are the following ones:
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From this and by using (5), we may use the results of Carr and Al-Amood (1980). In this particular case, a center
manifold is given by ( ) ( )y,xgv,y,xfu ==  where ( ) ( ) 00,0g0,0f ==  and ( ) ( ) 00,0g0,0f =′=′ .  Note that the
mapping ( )⋅M  defined in Carr and Al-Amood (1980) is given by
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where ( )g,f=ϕ .  Now, taking ( ) ( ) 22
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( )( )( )
( )( )

( )
( )

( )( )
( )

( )
( )

( )
,

k4k4

2
F

,
k4k4

k42
E

,
k4k4

k2
D

,
k4k4

k42
C

,
k4k4

2
B

,
k4k4

k2k4k2
A

22
2

2
2

22

22
2

2
2

2
2
2

22
2

2
2

22

22
2

2
2

2
2

2
2
2

2
2

22
2

2
2

22

22
2

2
2

2
2

2
2
2

2
2

2
2

ωµ

αµ
ωµ

αω
ωµ

αµ
ωµω

αωµ
ωµ

αµ
ωµω

αωωµ

−+
=

−+

−
=

−+

−
=

−+

−+−
=

−+
=

−+

−−+
−=

after a long, but straightforward computation, we will obtain ( ) ( )3OM 0 =ϕ , where ( )000 g,f=ϕ . By using the
Theorem 3 of Carr and Al-Amood (1980) we get ( )3O0 =−ϕϕ .  In this way the graph of the center manifold, the
equation (5) becomes
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Making the following change of variable 
k
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y → in (11), we will obtain
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The normal form of (12) is given by
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By using Guckenheimer and Holmes (1983), pg. 151-152), the constant a  is given by
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The equation (13) is expressed by using polar coordinates, as
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From (14) we obtain that ( ) 0trlimt =∞→ . Hence, ( )0,0  is an asymptotically stable equilibrium point of (13). From
Theorem 2 of Carr and Al-Amood (1980) we get that ( )0,0,0,0  is an asymptotically stable equilibrium point of  (6).  By
ignoring the ( )4O  terms in (14)1 we will obtain
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So, when 2k2 ω=  (resonant case) the solution ( )tr  has the least rate of decay.
Anyway, we obtain the same conclusions of the earlier section about stability of the equilibrium point ( )0,0,0,0 .

5. Case 0,0 21 => µµ

If 0k > ,the eigenvalues of the linear part of (5) are a pair of negative numbers and a pair of pure imaginary.
Moreover, the mapping ( ) ( )0,0v,uh = , ( )0y,0x ==  is a center manifold of (5). On the graph of h , (5) becomes
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Since ( )0,0  is a stable equilibrium point of (15), it follows from Theorem 2 of Carr and Al-Amood (1980) that ( )0,0,0,0
is a stable equilibrium point of (5). Let ( ) ( ) ( ) ( )( )tv,tu,ty,tx  be a solution of (5). Then, from the Theorem 2 of Carr and

Al-Amood (1980), there is a solution ( )tw  of (15) such that ( ) ( )( ) ( )teOty,tx γ−=  and ( ) ( )( ) ( ) ( )teOtwtv,tu γ−+=  where
0>γ is a constant.
As ( ) ( )0,0v,uh =  is a center manifold, we obtain from Remark 2.16, pg. 322 of Chow and Hale (1982),  that (5) is

topologically equivalent to the linear system
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Hence the periodic orbits ( ) ( ) ( )( )tu,tu,0,0v,u,y,x 00 &= , where 0uu 0
2
20 =+ω&& , of  (5) are stable orbits.
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6. Case 0,0 21 == µµ

Making v
2

v,u
2

u
1

2

1

2

α
α

α
α

→→ in (5), we obtain the following Hamiltonian system



,

u
H
v
H
x
H
y
H

v
u
y
x





























∂
∂−

∂
∂
∂
∂−

∂
∂

=



















&

&

&

&

                                                                                                                                                           (17)

where, ( ) ux
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is a positive matrix and  by using Theorem 3.4.17, pg. 207 of  Abraham and Marsden (1978), we obtain that ( )0,0,0,0  is
a stable equilibrium point of (17). Moreover, if k  and 2ω  satisfy the non-resonance condition, i.e ., 2k ω  and

INk2 ∉ω , then by Liapunov Subcenter Stability Theorem, see Theorem 8.4.2, pg. 580 of Abraham and Marsden
(1978), there are two two-dimensional invariant manifold of (17). Each invariant manifold is a union of closed orbits.
Clearly 0yx ==  is one of these manifolds.

As earlier, there is bifurcation at 
g

Lk 2
21

1
ω

α = .

We would like to notice that (17) is equivalent to the equation (1.3), pg. 75 of Starzhinsky (1980), which models
coupling of radial and vertical oscillations of particles in cycling accelerators.

7. Forced Oscillations

 By using, the Poincaré mapping as it was made in Theorem 4.1.1 of Guckenheimer and Holmes (1983), we will
obtain, by a simple argument, the following result.

Proposition 2. Consider the following system:

( ) ( )tgxgx 10 ε+=& ;                                                                                                                                                    (18)

where nn IRIR:g →⊂∆  is a ∞C  mapping, ∆  an open subset, 0  is a hyperbolic fixed point of g  and 1g  is a
∞C  T -periodic mapping. Then, for all ε  adequately small, (18) has a periodic orbit with period T  of the same

stability type as 0 .

By using this result, we will obtain that if 0k,0, 21 ≠>µµ  and B,A  are adequately small, then  (3) has periodic

orbits. Moreover, if 
g

Lk 2
21

1
ω

α <  these orbits are asymptotically stable and if 
g

Lk 2
21

1
ω

α > , we have unstable orbits.

8. Concluding Remarks

In this paper, we obtain results about the existence of bifurcation points of (1). We also analyzed the local behavior
of this system where some of the damping coefficients are equal to zero. Our results suggest strongly that it is enough to
consider only the vertical damping. For equation (3), where there exists ``harmonic forcing'', we obtain by use of a
simple argument, a bifurcation of periodic orbits. We used the techniques of the Center Manifold to obtain rigorous
results about the dynamic behavior of (1) and (3). These results are new, according author’s knowledgements.
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