
QUENCHING PROCESS MODELING IN STEEL CYLINDERS USING A
MULTI-PHASE CONSTITUTIVE MODEL

Wendell Porto Oliveira
Luís Felipe Guimarães de Souza
Pedro Manuel Calas Lopes Pacheco
CEFET/RJ - Department of Mechanical Engineering
20.271-110 - Rio de Janeiro - RJ - Brazil
E-Mail: wendellporto@uol.com.br,lfelipe@cefet-rj.br,calas@cefet-rj.br

Marcelo Amorim Savi
COPPE/UFRJ - Department of Mechanical Engineering
21.945-970 – Rio de Janeiro – RJ – Brazil
Cx. Postal 68.503
E-Mail: savi@ufrj.br

Abstract. Quenching is a commonly used heat treatment for hardening of steels. The resulting microstructures, which could be
formed from quenching, depend on cooling rate and on the chemical composition of steel. The internal stresses generated during
quenching can produce warping and even cracking and, therefore, the prediction of such stresses is relevant. Phenomenological
aspects of quenching involve couplings between three different physical processes, thermal, mechanical and phase transformation,
and its description is unusually complex. This article is concerned with the modeling and simulation of quenching in steel cylinders
using a constitutive model that includes seven phases (austenite, ferrite, cementite, pearlite, upper bainite, lower bainite and
martensite microstructures). JMAK (Johnson, Mehl, Avrami and Kolmogorov) law describes kinetics of diffusional phase
transformations, while non-diffusive transformations are described by Koistinen-Marburger law. A numerical procedure is
developed based on operator split technique associated with an iterative numerical scheme in order to deal with the non-linearities
in the formulation. Numerical simulations are carried out analyzing some aspects related to the cooling process. Results suggest
that the proposed model is capable of capturing the main behavior observed in experimental data.
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1. Introduction

Quenching is a heat treatment usually employed in industrial processes. It provides a mean to control mechanical
properties of steels as toughness and hardness. The process consists of raising the steel temperature above a certain
critical value, holding it at that temperature for a fixed time, and then rapidly cooling it in a suitable medium to room
temperature. The resulting microstructures formed from quenching (ferrite, cementite, pearlite, upper bainite, lower
bainite and martensite) depend on cooling rate and on chemical composition of the steel. The volume expansion
associated with the formation of martensite combined with large temperature gradients and non-uniform cooling can
promote high residual stresses in quenching steels. As these internal stresses can produce warping and even cracking of
a steel body, the prediction of such stresses is an important task.

Phenomenological aspects of quenching involve couplings among different physical processes and its description is
unusually complex. Basically, three couplings are essential: thermal, phase transformation and mechanical phenomena.
Since the quenching problem involves different knowledge areas, several authors have addressed these three aspects
separately. Sen et al. (2000) considers steel cylinders without phase transformations. Others focus on the modeling of
the phase transformation phenomena (Denis et al., 1992; Hömberg, 1996; Chen et al., 1997, Çetinel et al., 2000; Reti et
al., 2001). Several authors have proposed coupled models that are not generic and are usually applicable to simple
geometries as cylinders (Inoue & Wang, 1985; Melander, 1985; Sjöström, 1985; Denis et al., 1985, 1987, 1999; Denis,
1996; Fernandes et al., 1985; Woodard, et al., 1999; Gür & Tekkaya, 1996, 2001). There are complex aspects that are
usually neglected in the analysis of quenching process. As an example, one could mention the heat generated during
phase transformation which some authors treats by means of the latent heat associated with phase transformation (Inoue
& Wang, 1985; Denis et al., 1987, 1999; Sjöstrom, 1994; Woodward et al., 1999). Meanwhile, other coupling terms in
the energy equation related to other phenomena as plastic strain or hardening are not treated in literature and their
analysis is an important topic to be investigated.

This article is concerned with the modeling and simulation of quenching in steel cylinders using a constitutive
anisothermal model that includes seven phases (austenite, cementite, ferrite, pearlite, upper bainite, lower bainite and
martensite microstructures). The kinetics of the diffusive transformations is described by JMAK (Johnson, Mehl,
Avrami e Kolmogorov) law (Avrami, 1940; Cahn, 1956), while non-diffusive transformations is described by
Koistinen-Marburger law (Koistinen & Marburger, 1959). The proposed model is based on a model formulated within
the framework of continuum mechanics and the thermodynamics of irreversible processes considering two phases:
austenite and martensite (Pacheco et al. 1997, 2001a,b; Silva et al., 2002). The adopted approach is general and allows a
direct extension to more complex situations. The model includes thermomechanical couplings in the energy equation
associated with phase transformation, plasticity and hardening, allowing the investigation of the effects promoted by
these coupling (Silva et al., 2002). A numerical procedure is developed based on the operator split technique (Ortiz et
al., 1983) associated with an iterative numerical scheme in order to deal with non-linearities in the formulation. With
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this assumption, the coupled governing equations are solved from four non-coupled problems: thermal, phase
transformation, thermoelastic and elastoplastic. The proposed general formulation is applied to progressive induction
and through hardening of steel cylinders. Numerical results show that the proposed model is capable of capturing the
main behavior observed on experimental data.

2. Phenomenological Aspects of Phase Transformation

In quenching process, a steel piece is heated and maintained at constant temperature until austenite is obtained.
Afterwards, a cooling process promotes the transformation of austenite into up to seven different microstructures:
ferrite, cementite, pearlite, upper bainite, lower bainite and martensite. In order to describe all these microstructures,
one represents the volumetric fraction of each as a phase βi (austenite i = A, ferrite i = 1, cementite i = 2, pearlite i =3,
upper bainite i = 4, lower bainite i = 5 and martensite i = M). All these phases may coexist, satisfying the following
constraints: βA + β1 + β2 + β3 + β4 + β5 + βM = 1, 0 ≤ βi ≤ 1.

Phase transformation from austenite to martensite is usually considered as non-diffusive transformation, which
means that amount of volumetric phase is only a function of temperature (Chen et al., 1997; Çetinel et al., 2000; Reti et
al., 2001). This process may be described by the equation proposed by Koistinen and Marburger (1959),
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se −−−= 10ββ (1)

where 0
Aβ  is the amount of austenite at the beginning of transformation, k is a material property and T is the

temperature. Under a stress-free state, Ms and Mf are the temperatures where martensitic transformation starts and
finishes its formation. Assuming Mf as the temperature where martensitic phase reaches an amount of 99%, from Eq.
(1), k = 2 ln(10)/(Ms−Mf). In order to incorporate these limits in Eq. (1) and to assure the irreversibility of the martensite
transformation, the following condition is defined (Hömberg, 1996):
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where dot represent the differentiation with respect to time t and Γ(x) is the Heaviside function (Hömberg, 1996; Chen
et al., 1997). The evolution of martensitic phase can be rewritten in a rate form as follows
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Pearlite, cementite, ferrite and bainite formations are usually considered as diffusion-controlled transformation,
which means that they are time dependent. The evolution of these phase transformations can be predicted through an
approximate solution using data from Time-Temperature-Transformation diagrams (TTT) (Çetinel et al., 2000; Reti et
al., 2001). The analysis of phase transformation using this diagram is done considering that the cooling process may be
represented by a curve divided in a sequence of isothermal steps, with a duration ∆t, as shown in the Continuos-
Cooling-Transformation diagram (CCT) of Fig. (1a). Through each isothermal step, the phase evolution is calculated
considering isothermal transformation kinetics expressed by a JMAK law (Avrami, 1940; Cahn, 1956; Çetinel et al.,
2000; Reti et al., 2001):
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Notice that βi is the volumetric fraction of phase i, at a constant temperature T during the time t, measured from the
start of cooling process; ni is the Avrami exponent and bi is a parameter that characterizes the rate of nucleation and
growth processes (Avrami, 1940; Reti et al., 2001). The parameter maxˆ

iβ  is represented by
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where max
iβ is a parameter that represents the maximum volumetric fraction for a phase i. These three parameters are

function of temperature and can be obtained from TTT diagrams being usually presented in the form of curve fitted
equations (Hömberg, 1996; Çetinel et al., 2000; Reti et al., 2001).
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Figure 1. (a) Cooling curve represented in a CCT diagram by a series of small isothermal time steps. (b) Fictitious time

in the TTT diagram.

Equation (4) is valid for isothermal transformations and must be modified before it can be applied to the
anisothermal process approximated by the sequence of isothermal steps shown in Fig. (1a). With this aim, a fictitious
time t* is defined to include effects associated with temperature change from step T to step (T + ∆T). The fictitious time
t* represents the time necessary for the formation of the volumetric fraction βi at temperature T, considering an
isothermal transformation developed at temperature (T + ∆T). This definition is considered as follows
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This fictitious time is used as the starting point to compute the phase evolution during the isothermal time step ∆t at
temperature (T + ∆T), as shown in Fig.(1b). Now, the amount of volumetric phase at the end of the isothermal step (T +
∆T) at the time instant (t + ∆t) can be computed from (Çetinel et al., 2000; Reti et al., 2001):
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The following condition must be defined to incorporate the temperature dependent functions, s
it and f

it  that limits
the beginning and the ending of the phase transformation, and also to assure its irreversibility
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With these assumptions, the rate form of volumetric phase i is written as follows,
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3. Constitutive Model

Constitutive equations may be formulated within the framework of continuum mechanics and the thermodynamics
of irreversible processes, by considering thermodynamic forces, defined from the Helmholtz free energy, ψ, and
thermodynamic fluxes, defined from the pseudo-potential of dissipation, φ  (Pacheco et al., 2001).

The quenching model here proposed allows one to identify different coupling phenomena, estimating the effect of
each one in the process. With this aim, a Helmholtz free energy is proposed as a function of observable variables, total
strain, εij, and temperature, T. Moreover, the following internal variables are considered: plastic strain, p

ijε , volumetric

fractions of seven different microstructures, represented by phases in a macroscopic point of view, β = (βA, β1, β2, β3,
β4, β5, βM). A variable related to kinematic hardening, αij, is also considered. Therefore, the following free energy is
proposed, employing indicial notation where summation convention (i = 1,2,3) is evoked (Eringen, 1967), except when
indicated:
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where ρ is the material density. The elastic strain is defined as follows:
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In the right hand side of this expression, the first term is the total strain while the second is related to plastic strain.
The third term is associated with thermal expansion. The parameter αT is the coefficient of linear thermal expansion, T0

is a reference temperature and δij is the Kronecker delta. The fourth term is related to volumetric expansion associated

with phase transformation from a parent phase ij
r
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being the result of several physical mechanisms related to local plastic strain promoted by the phase transformation
(Denis et al., 1985; Sjöström, 1985; Desalos et al., 1982); κr is a material phase parameter,  g(βr) expresses the
dependence on the transformation progress and d

ijσ  the deviatoric stress defined by d
ijσ = σij − δij (σkk/3), with σij being

the stress tensor component. It should be emphasized that this strain may be related to stress states that are inside the
yield surface. With these assumptions, energy functions may be expressed by,
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Thermodynamics forces (σij, Pij, Xij, Bβi, s), associated with state variables ),,,( , Tij

p
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where auxiliary tensors were defined:
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)(βββ IZi ∂∈  is the sub-differential of the indicator function Iβ (Rockafellar, 1970).
In order to describe dissipation processes, it is necessary to introduce a potential of dissipation or its dual, which

can be split into two parts: )(),,(),,,( ***
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where gi = (1/T) ∂T/∂xi and Λ is the coefficient of thermal conductivity which is function of temperature; ),(*
ijijf XPI  is

the indicator function associated with elastic domain, related to the von Mises criterion (Lemaitre & Chaboche, 1990),
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σY is the material yield stress, d
ijX = Xij − δij (Xkk/3) and d
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With this assumption, thermodynamic fluxes, expressed as evolution laws obtained from φ*, may be written as
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where sign(x) = x / |x|,  λ is the plastic multiplier from the classical theory of plasticity (Lemaitre & Chaboche, 1990)
and qi is the heat flux vector. Assuming that the specific heat is 22 /)/( TWTc ∂∂−= ρ  and the set of constitutive Eqs.
(14-17, 24-37), the energy equation can be written as (Pacheco, 1994):
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Terms aI and aT are, respectively, internal and thermal coupling. In this article, both terms are neglected and
thermal problem is solved as a rigid body.



4. Cylindrical Bodies

This contribution considers cylindrical bodies as an application of the proposed general formulation. Other
references present different analyses of this problem (Pacheco et al., 1997; Camarão et al., 2000; Silva et al. 2002).
With this assumption, heat transfer analysis may be reduced to a one-dimensional problem. Also, plane stress or plane
strain state can be assumed. Under these assumptions, only radial, r, circumferential, θ, and longitudinal, z, components
need to be considered and a one-dimensional model is formulated. For this case, tensor quantities presented in previous
section may be replaced by scalar or vector quantities. As examples, one could mention: Eijkl replaced by E; Hijkl

replaced by H; σij replaced by σi (σr , σθ , σz). A detailed description of these simplifications could be found in Pacheco
et al. (2001a).

The numerical procedure here proposed is based on the operator split technique (Ortiz et al., 1983; Pacheco, 1994)
associated with an iterative numerical scheme in order to deal with non-linearities in the formulation. With this
assumption, coupled governing equations are solved from four uncoupled problems: thermal, phase transformation,
thermo-elastic and elastoplastic.

Thermal Problem - Comprises a radial conduction problem with convection. Material properties depend on
temperature, and therefore, the problem is governed by non-linear parabolic equations. An implicit finite difference
predictor-corrector procedure is used for numerical solution (Ames, 1992; Pacheco, 1994).

Phase Transformation Problem – The volumetric fractions of the phases are determined in this problem. Evolution
equations are integrated from a simple implicit Euler method (Ames, 1992; Nakamura, 1993).

Thermo-elastic Problem - Stress and displacement fields are evaluated from temperature distribution. Numerical
solution is obtained employing a shooting method procedure (Ames, 1992; Nakamura, 1993).

Elastoplastic Problem - Stress and strain fields are determined considering the plastic strain evolution in the
process. Numerical solution is based on the classical return mapping algorithm (Simo & Miehe, 1992; Simo & Hughes,
1998).

5. Numerical Simulations

As an application of the general proposed model, numerical investigations associated with the quenching of long
steel cylindrical bar of SAE 4140H steel with radius R are carried out. Numerical simulations include progressive
induction hardening (PIH) and through hardening (TH). PIH is a heat treatment process carried out by moving a
workpiece at a constant speed through a coil and a cooling ring. Applying an alternating current to the coil, a magnetic
field is generated inducing eddy currents that heats the workpiece and promotes the formation of a thin surface layer of
austenite. Afterwards, a cooling fluid is sprayed on the surface by the cooling ring promoting the quenching of the
layer, which is transformed into martensite, pearlite, bainite and proeutectoid ferrite/cementite depending on, among
other things, the cooling rate. A hard surface layer with high compressive residual stresses, combined with a tough core
with tensile residual stresses, is often obtained. TH consists of heating the steel, usually in a furnace, to a suitable
austenitizing temperature, holding at that temperature for a sufficient time to effect the desired change in crystalline
structure, and immersing and cooling in a suitable liquid medium.

Material parameters of the cylinder are the following (Denis et al., 1985; Denis et al., 1999; Woodard, et al., 1999;
Sjöström, 1985; Melander, 1985; Leblond et al., 1989): γ1 = 3.333x10-3, γ2 = 0, γ3 = γ4 = γ5 = 5.000x10-3, γ6 = 1.110 x
10-2, κi = (5/(2σy

A))γi (where σy
A is the austenite yielding stress and i = 1,2,3,4,5,6), ρ = 7.800 x 103 Kg/m3, Ms = 370

°C, Mf = 260 °C. Other parameters depend on temperature and needs to be interpolated from experimental data.
Therefore, parameters E, H, σY, αT, c, Λ and the convection coefficient, h, are evaluated by polynomial expressions
(Melander, 1985; Hildenwall, 1979; Pacheco et al., 2001a; Silva et al., 2002). Temperature dependent parameters for
diffusive phase transformations presented in Section 2 were obtained from TTT diagrams (ASM, 1977).

After a convergence analysis, a spatial discretization of 81 points was adopted for the numerical simulations.
At first, the proposed multi-phase model is employed in order to analyze the phase products for simple cooling

curves. Figure (2a) shows a TTT diagram for SAE 4140H steel where points represent experimental data (ASM, 1977)
while lines represents fitted curves. Figure (2b) shows a CCT diagram for the same steel (ASM, 1977) where colored
lines 1 to 5 represent five different cooling curves obtained from data fitting and used as temperature evolution input for
the multi-phase model. Table (1) presents a comparison between values predicted by the model and experimental data
obtained from this CCT diagram. Errors smaller than 16% were observed in the transformed volumetric phase fractions
at the end of cooling. These results may be considered as good predictor since experimental data has a large dispersion.
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Figure 2. SAE 4140H. (a) TTT diagram with fitted parameters s
it and f

it . (b) Five cooling curves in a CCT diagram.

Table 1. Predicted values and experimental data obtained from a CCT diagram for SAE 4140H.

Cooling Curve 1 Cooling Curve 2 Cooling Curve 3 Cooling Curve 4 Cooling Curve 5
CCT Predicted CCT Predicted CCT Predicted CCT Predicted CCT Predicted

Bainite 3 14 75 60 85 84 75 63 0 0
Ferrite 0 0 2 1 7 12 12 19 30 33
Perlite 0 0 0 0 5 4 10 18 70 67
Martensite 97 86 23 39 3 0 3 0 0 0

PIH simulations regards a cylinder with a radius R = 22.5 mm, where a 3 mm thickness layer is heated to 850°C for
10s and then, immersing in a liquid medium at 20°C until time instant 120s is reached. Experimental results for PIH in
cylindrical bodies, discussed in Camarão (1998) and Pacheco et al. (2001a, 2001b) are used as reference for the
comparison with numerical results here obtained. Experimental results, obtained for similar conditions, furnish
circumferential (σθ) and longitudinal (σz) residual stress values at the surface of −830 MPa and −500 MPa, respectively.
These values, measured through X-ray diffraction technique, present an uncertainty of 30 MPa. Moreover, hardness
measurements and metallographic analysis are performed to identify the martensitic hardened layer.

Temperature time history for different positions of the cross-section is presented in Fig. (3a). Notice that for layers
deeper than 3 mm, temperature does not reach austenitizing limit.

The stress distribution over the radius for the final time instant is presented in Fig. (3b). Notice the stress values on
the external surface, σθ = −879 MPa and σz = −274 MPa. The circumferential stress, σθ, is close to experimental results.
The longitudinal stress, σz, on the other hand, presents a discrepancy that could be explained by the assumption of plane
strain state adopted to simulate the restriction associated with adjacent regions of the heated region, which is at lower
temperatures.
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Figure 3. PIH quenched cylinder (R = 22.5 mm): (a) Temperature time history for different positions and (b) stress
distribution for final time instant.

Figures (4a) and (4b) show PIH experimental measures (Camarão, 1998). Figure (4a) shows a cross-section of a
quenched bar submitted to a Nital 2% etch, while Fig. (4b) presents its hardness measures. In order to compare
numerical and experimental results, a relation between volume fraction of phases and hardness is established.
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Therefore, it is assumed that martensitic phase (β6) has 60 HRC while a value of 30 HRC is adopted for the regions
where martensitic phase is not present, that is, this value is considered as a mean value of hardness among the other
phases. Figure (4c) presents the martensite volumetric fraction distribution for final time instant. The process quenches
only points from external surface to 3 mm deep. Outside this region, retained austenite is observed. Once again,
numerical results predicted by the model are closer to experimental data.
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Figure 4. PIH quenched cylinder (R = 22.5 mm): (a) Cross-section view (Nital 2% etch), (b) hardness measures and (c)
and martensite volumetric fraction distribution for final time instant.

A less severe cooling condition is now considered for TH simulations. Therefore TH simulations concerns a
cylinder with R = 38.1 mm heated to an homogeneous temperature of 850°C which is immersed in mineral oil Durixol
V35 at 60°C until time instant 1200 s (≅ 20 min) is reached. Since all cylinder sections experiment the same thermal
history and the longitudinal direction is free, a plane stress state is adopted. As in the previous case, the convection
coefficient, h, is temperature dependent and it is interpolated from experimental data presented by Ma (2002) and
reproduced in Fig. (5a). Temperature time history for different positions of the cross-section is presented in Fig. (5b) in
a time log scale. The highly non-linear temperature dependence of the thermal parameters, especially h, promotes a
complex temperature evolution where the cooling rate varies considerably.
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Figure 5. TH quenched cylinder (R = 38.1 mm): (a) Convection coefficient, h, for mineral oils (Ma, 2002) and (b)

temperature time history for different positions.
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Figure 6. TH quenched cylinder (R = 38.1 mm): (a) phase and (b) stress distributions for the final time instant.



Values of volumetric fractions of each phase and stress distributed through the radius of the cylinder are shown in
Fig. (6) for the final time instant. Compressive circumferential stress is noted at the surface of the cylinder. This
simulation shows important information that could be furnished by the model since the presence of tensile residual
stresses at the cylinder surface can be especially dangerous for mechanical purposes. Notice that tensile stress fields
normally initiate fatigue cracks. Therefore, the prediction of such stresses allows the development of more precise
methodologies for assessing the structural integrity of mechanical components. Figure (7) shows the volumetric fraction
time evolution of the microstructural phases at the center and at the surface.
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Figure 7. TH quenched cylinder (R = 38.1 mm): Volumetric fraction phase evolution at center (a) and surface (b).

6. Conclusions

The present contribution regards on modeling and simulation of quenching process, presenting an anisothermal
multi-phase constitutive model formulated within the framework of continuum mechanics and thermodynamics of
irreversible processes. This approach allows a direct extension to more complex situations, as the analysis of three-
dimensional media. A numerical procedure is developed based on the operator split technique associated with an
iterative numerical scheme in order to deal with non-linearities in the formulation. The proposed numerical procedure
allows the use of traditional numerical methods, like the finite element method. Progressive induction hardening and
through hardening of cylindrical bodies are considered as applications of the proposed general formulation. Numerical
results show that the proposed model is capable of capturing the general behavior of experimental data. Therefore, it
can be used as a powerful tool to predict the thermomechanical behavior of quenched mechanical components and
choose important parameters as the cooling medium and the induced layer thickness.
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