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Abstract. This article presents the behavior of slender elastic rods subjected to axial terminal forces and self-weight.  The
mathematical formulation is presented, a solution is sought for a double-hinged boundary condition and the analysis is carried out for
different values of non-dimensional weight.  The formulation derives from geometrical compatibility, equilibrium of forces and
moments and constitutive relations yielding a set of six first order non-linear ordinary differential equations with boundary conditions
specified at both ends, which characterizes a complex two-point boundary value problem.  Furthermore, a perturbation method is
used to find the critical buckling loads and initial post-buckling solutions.  A numerical integration scheme based on a three
parameter shooting method is employed in the post-buckling solutions. 
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A large number of papers have been published on buckling and post-buckling of slender rods since Bernoulli, Euler 

and Lagrange’s classical analytical contributions in the 18th century.  An excellent review of the early developments in 
this field is presented by Love (1944).  This class of problem exhibits several interesting phenomena, as described in 
previous research, such as limit load, bifurcation, jump and hysteresis. 

There has certainly been more work published on weightless rods.  Gurfinkel (1965) calculated the critical buckling 
loads for elastically restrained rods.  Wang (1997) presented formulation and solution for large displacement 
configurations of clamped-hinged rods.  Tan and Witz (1995) developed analytical solution for elastic rods subjected to 
terminal forces and moments.  Lee and Oh (2000) provided a solution for the Bernouilli-Euler beam with variable cross-
section and constant volume.  Vaz and Silva (2002) developed a solution for rod post-buckling with boundary 
conditions hinged and elastically restrained. 

Several models have also been studied for buckling and initial post-buckling of rods subjected to variable axial 
forces, mainly motivated by the use of long submersed rods such as marine risers and drill-strings in the offshore 
oil&gas exploitation.  Lubinski (1950) employed a power series solution to calculate buckling loads of vertical drill-
strings.  Huang and Dareing (1966, 1968 and 1969), Plunkett (1967), Wang (1983), Bernitsas and Kokkinis (1983a-b 
and 1984), Vaz and Patel (1995) and Patel and Vaz (1996) also researched the rod buckling and initial post-buckling 
characteristics employing power series or Galerkin solutions.  However, the problem of post-buckling of slender elastic 
vertical rods subjected to self-weight is not adequately addressed in literature.  Recently Jurjo et al (2001) partially 
provided numerical and experimental results for large deflections of slender bars under self-weight. 

 
2. MATHEMATICAL FORMULATION OF THE PROBLEM 

 
The mathematical formulation derives from considering geometrical compatibility, equilibrium of forces and 

moments and constitutive relations.  Hence a system of six first order non-linear ordinary differential equations is set to 
describe the elastica of deflected rods subjected to an axial variable load due to its self-weight, as shown in Figure 1a. 
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Figure 1a - Schematic of a Deflected Vertical Rod Subjected to Self-Weight. 
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Figure 1b – Infinitesimal Element of Rod. 
 
Geometrical Compatibility 

Applying trigonometrical relations to the infinitesimal rod element  (see figure 1b) yields: dS
 

θcos=
dS
dX  (1a)

  

θsin
dS
dY

=  (1b)

 
Where  is the rod arc-length ( ), S LS ≤≤0 ( )YX ,  are the Cartesian coordinates of the deflected rod and θ  is 

the angle between the tangent and the X -axis.  Furthermore the curvature Κ  is given by: 
 

dS
dθ

=Κ  (1c)

 
Equilibrium of Forces and Moments 

A schematic of the internal forces and moments in the rod infinitesimal element is shown in figure 1b.  The 
equilibrium of vertical and horizontal forces and bending moments, respectively yield: 

 



ρ−=
dS
dP  (2a)

  

0=
dS
dH  (2b)

  

0cos =−+ θθ HsinP
dS
dM  (2c)

 
Where M  is the bending moment, H  and P  are respectively the horizontal and vertical forces and ρ  is the 

distributed weight per unit length. 
 
Constitutive Relations 

Assuming linear elastic, homogeneous and isotropic materials, and considering the state of pure bending results in: 
 

Κ= EIM  (3)
 
Where E  is the modulus of Young and I  is the cross-sectional second moment of inertia. 
Therefore, substituting equation (3) into (2c) results: 
 

θθ cosHsinP
dS
dEI +−=
Κ  (4)

 
Boundary Conditions 

A set of six boundary conditions must be defined and for the double-hinged rod they may be specified as: 
 

( ) 0)()()()0()0(0 1 =Κ==−=Κ== LLYXLXYX  (5)
 
Where  is the top end X-coordinate (1X ∆−= LX1 ).  The effect of the boundary conditions on the rod buckling 

and post-buckling behavior is significant and it may be readily explored using the same methodology. 
 

The Governing Equations 
It is convenient to reduce the set of differential equations (1a), (1b), (1c), (2a), (2b) and (4) to a non-dimensional 

form using the following change of variables: sLS = , yLY = , xLX = , Lκ=Κ , 3LEIρρ = , 2LEIpP =  and 
2LEIhH = , where . Hence: 10 ≤≤ s

 

θcos=
ds
dx  (6a)

 

θsin
ds
dy

=  (6b)

 

κθ
=

ds
d  (6c)

 

ρ−=
ds
dp  (6d)

 

0=
ds
dh  (6e)

 

θθκ coshpsin
ds
d

+−=  (6f)

 
Where  constitute the deflected rod non-dimensional Cartesian coordinates, ),( yx s  the non-dimensional arc-

length, κ the non-dimensional curvature, θ  the angle formed by the curve tangent and the longitudinal axis,  and  
respectively the non-dimensional longitudinal and lateral loads and 

p h
ρ  the non-dimensional weight. 



Furthermore the boundary conditions given by equation (5) may be also made non-dimensional: 
 

( ) 0)1()1()1()0()0(0 1 ===−=== κκ yxxyx  (7)
 
Where δ−= 11x  ( L∆=δ ).  Equation (7) represents non-movable and movable (movement in the x-axis 

allowed) hinged conditions respectively at the lower and upper ends. 
Buckling, initial post-buckling, and numerical integration solutions are sought for different values of ρ . 
 

3. THE INITIAL POST-BUCKLING SOLUTION 
 
Poincaré’s method - see Nayfeh (2000) - allows the solution to be written as an expansion in terms of a perturbation 

parameter ε  and perturbation coefficients , rendering a set of sequentially, and analytically solvable, 
linear ordinary differential equations.  Hence: 

1010 ,,, bbaa

 
...)()()( 1

3
0 ++= sss θεθεθ  (8a)

 
...1

3
0 ++= bbh εε  (8b)

 
...)0( 1

2
0 ++= aap ε  (8c)

 
Where )(sθ  and  were expanded by odd functions whereas  was expanded by an even function because of 

the symmetrical nature of the problem.  Note that  is the axial load at the lower end hence the load at the upper end 
is given by 

h )0(p
)0(p

ρ−)0=)1(p (p . 
Integrating equation (6d) and using (8c) yields: 
 

saasp ρε −++= ...)()( 1
2

0  (8d)
 
When  0=ε  there is no perturbation and consequently no post-buckling, so  is the non-dimensional critical 

buckling load at the lower end. 
0a

Expanding θcos and θsin  in Taylor series and using equation (8a) yields: 
 

...!2/)(1cos 2
0

2 +−= sθεθ  (9a)
 

( ) [ ] ...!3/)()( 3
01

3
0 +−+= ssssin θθεθεθ  (9b)

 
Substituting equations (8a), (8b), (8d) into (6a)-(6f) and (7), expanding them and separating terms proportional to ε 

and ε3 respectively yields: 
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The solution of the first order differential equation (10a) is sought by a power series function: 
 

∑
∞

=

=
0

n
n0 sC

n

(s)θ  (11a)

 
Which can be substituted in the differential equation (10a) and manipulated algebraically to give: 
 

( ) ( )
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++−++−++=

sCbCaa
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ρ
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Applying the corresponding boundary conditions yields a homogeneous system of algebraic linear equations whose 

determinant is set to zero to avoid the trivial solution, and consequently the values of  (buckling load), C  and  
may be found for a range of 

0a 0 1C
ρ .  For high values of ρ  it is necessary to change the origin of the Cartesian axis system 

from the lower end to the neutral (zero tension) point of the rod to facilitate the computational processing. 
Substituting )(0 sθ  in the second order perturbation equation (10b) and again solving it by a power series function: 
 

∑
∞

=

=
0

n
n1 sD

n

(s)θ  (12a)

 
Substituting the equation (12a) in (10b), and after similar algebraic manipulation: 
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The constant b  is set equal to  and the boundary conditions must be applied in order to force the constants  

and 
0 0a 0D

1D

(), y

 to be zero because the homogeneous solution is already accounted for in the first order solution.  A non-
homogeneous system is then solved, the perturbation coefficients  and b are found, with results presented in figure 
2.  Once the perturbations coefficients are calculated, it is possible to determine the rod’s geometrical configuration 
(

1a 1

)(),( sssx θ ) for corresponding loads  (i.e., for any value of )(sp ε ).  Note that: 

∫−=
s

dssx
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dssddssds /)(/)()( 1
3

0 θεθεκ += . 

Furthermore, the axial top end displacement may be also obtained by )1(1 x−=δ , or . ∫=
1

0

2
0

2 )(!2/ dssθεδ

Important information can be withdrawn from the perturbation parameters, as a function of ρ , displayed in figure 
2. 
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Figure 2 - Perturbation Coefficients as a Function of ρ . 
 
When 0=ρ , there is no self-weight, so the critical buckling load a  is equal to π0

2 as determined by Euler in 1744.  
For double-hinged weightless rods figure 2 shows that  and  tend to infinity, however, Vaz and Silva (2002) 
showed that a different perturbation scheme must be used since the horizontal force  is zero.  Hence: 

1a 1b
h

 
...2337.1 22 ++= επp  

( ) ( ) ( ) ( ) ( ) ([ ] ...1964.03cos02083.0cos1654.01964.0cos 3 +∗−−++= ssinsssssinss ππππεπεθ )  
 
When the critical buckling load  equals 0a ρ  (point A in figure 2), the axial force at the lower end  supports 

the entire rod weight and consequently the force at the upper end  equals zero.  In other words, the rod buckles 
under its self-weight and no extra compressive force needs to be applied.  This critical situation occurs for 

)0(p
)1(p

5687.18=ρ . 
If the lower end axial load is reached, the rod buckles as expected.  Furthermore, the rod initial stability 

condition is determined by examining the perturbation coefficient a .  If  is positive an increase in the load  
(see equation (8c)) defines a stable post-buckling equilibrium configuration.  However, if  is negative, an axial force 

lower than  (critical load) must be applied in order to be constituted a post-buckling configuration because  must 

be positive or null in equation (8c).  A loss of stability is then experienced for values of 

0a

1 1a )0(p

1a

0a 2ε

0675.63>ρ  as  becomes 
negative.  The transition is indicated in figure 2 by point B. 

1a

The initial post-buckling solutions are also presented in figures 3a to 3d together with the full post-buckling 
mapping.  It is shown that the buckling initiation process is well represented by the analytical solution. 

 
4. THE POST-BUCKLING NUMERICAL SOLUTION 

 
As the set of six first order non-linear ordinary differential equations and its boundary conditions specified at both 

ends characterize a two-point boundary value problem, a technique may be employed to transform it into an initial value 
problem and allow a direct integration scheme.  Three boundary conditions are given at each end, see equation (7), so 

, ( )0h ( )0θ and  must be found.  A shooting method available in Mathcad may be conveniently employed to 
compute the initial missing values.  The following procedure is carried out: (a) the initial missing values are guessed; 

( )0p



(b) the boundary value endpoints are specified; (c) the set of differential equations is defined; (d) a load function which 
returns the initial condition is established; (e) a score function to measure the distance between terminal conditions and 
desired conditions is employed; (f) the equivalent initial conditions are finally calculated.  From this point, a Runge-
Kutta high order solution algorithm may be promptly applied to solve the set of non-linear differential equations. 

Figures 3a to 3d respectively show the post-buckling and initial post-buckling curves h×δ , ( )0p×δ , ( ) h×0θ  
and ( ) ( )01 p×θ  for 350,250,125,0675.63,5=ρ .  Figure 3a exhibits, as expected, symmetry.  The maximum values of 

 increase with h ρ  and the earlier the larger are the values of ρ .  When the upper end axial displacement is 1=δ  the 
end points coincide, hence the loads at the lower and upper ends are respectively 2ρ  and 2ρ−  since 

ρ−= )0() p1(p .  Figure 3b is anti-symmetric with respect to the line 1=δ .  For 0675.63<ρ  the rod is initially 
stable as indicated by the positive curve slope.  When 0675.63=ρ  the rod buckles and “yields” at a constant load.  
When 0675.63>ρ  an unstable region is encountered.  If load is progressively applied the rod buckles (jumps!) before 
the critical load  is reached.  If the process is displacement controlled the rod progressively deflects at reducing 
load.  This phenomenon occurs in a narrower region for smaller values of 

(0p )
ρ , nonetheless the jump is more significant.  

Figures 3c and 3d show similar patterns when 10 <≤ δ  and 1 2≤< δ  respectively as the rod reverses its shape.  As 
expected the rod angles ( )0θ  and ( )1θ  grow more rapidly when ρ  increases.  
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Figure 3 - Post-Buckling Mapping 
 
Figures 4a to 4f respectively present the post-buckling geometric configurations for 

350,250,125,0675.63,35,5=ρ .  In each graph the deformed shapes are displayed for 5.0,3.0,1.0=δ  etc.  The 
influence of the self-weight on the rod post-buckling behavior is evident.  This effect becomes more asymmetric as ρ  
is progressively increased. 
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Figure 4 - Post-Buckling Geometric Configurations 
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Figure 4 - Post-Buckling Geometric Configurations (continued) 

 
 

5. CONCLUSIONS 
 
This paper presents a formulation and a solution for the buckling and large deflection non-linear analysis of 

initially vertical elastic double-hinged rods subjected to terminal forces and a gravitational field.  A perturbation scheme 
is developed to provide an analytical solution for the rod initial post-buckling.  The rod post-buckling response is 
obtained from solving a complex two-point boundary value problem governed by a set of six first order non-linear 
ordinary differential equations.  The numerical and analytical solutions developed in this paper are in sound agreement. 
The effect of the boundary conditions on the rod behavior is significant and it can be readily calculated with the 
methodologies developed. 

The slender elastic rod stability behavior and its post-buckling configuration are greatly influenced by the value of 
the non-dimensional weight.  The rod is shown to be initially stable up to a critical value of self-weight ( 0675.63<ρ  
for the non-dimensional parameterization employed) and unstable elsewhere. 
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