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Abstract. This paper describes the development of a thermal identification technique to be applied in different materials (conductor
and non-conductor). The technique, which estimates simultaneously the thermal diffusivity,α, and the thermal conductivity, λ, is
based on signal treatment in both time and frequency domains of a same data. In the frequency domain, a dynamic model is defined
by combining two heat flux and two superficial temperature. The thermal diffusivity is, then, obtained by identifying the delay of the
frequency response of the model performed numerically. Once the  thermal diffusivity is known the same data can be used to obtain
the thermal conductivity in the time domain. In this case a least square function of measured and calculated temperature is used.
The independent process for the thermal properties identification assures the obtained values of α and λ to be unique. One novelty
of this technique is the numerical dynamic model that allows one or two-dimensional treatments and also the use of optimal sensor
locations. The new technique is presented by simulating two different materials: a stainless steel (AISI304) and a polymer (PVC).
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1. Introduction

The thermal property knowledge is essential to predict the behavior of any thermal system. Several examples can be
given in this way: obtaining the temperature at interface of the tool-ship in a cutting machining, the thermal efficiency
in a welding process, the isolate capacity of a coating tool, or a moving source in a phase change process. Each one of
these problems could not be carried out without knowing the values of the thermal conductivity or thermal diffusivity.

Several methods can be found in literature about obtaining these properties. It can be cited the hot-wire method
(Blackwel, 1954, Log, 1993) the flash method (Parker et all, 1961), parameter estimation technique (Beck and
Arnold, 1977), (Blackwel et all, 2000), impedance techniques (Guimarães et all, 1995) or correlation techniques (Lima
e Silva et all., 1998). The flash method is one of the best methods to obtain the thermal diffusivity while the hot wire is
suitable to estimate both properties but are employed more efficiently for thermal conductivity estimating in non
metallic materials. The parameter estimation can also be used to estimate simultaneously the thermal properties for
different types of material. However some efforts should be done to avoid low sensitivity regions for obtaining both
properties with confidence. Lima e Silva et all (1998) and Guimarães et all (1995) have proposed the simultaneous
estimation in independent ways. They use two independent objective functions for each one of the properties, thermal
conductivity and thermal diffusivity, what assures the values estimated to be unique. In the first technique the properties
are estimated in time domain case while the frequency domain is used in the last technique. However, both techniques
have some difficulties in the metallic material application.

The additional difficulty that appears in metallic application is due to the thermal contact resistance, low sensitivity
and the difficulty of obtaining two-dimensional experiments. The technique proposed here tries to avoid these problems.
Two different materials (polymer and conductor) are simulated in order to demonstrate the wide applicability of the
technique. Besides, the time and frequency domain are mixed to estimate the thermal properties simultaneously and in
an independent way. Some advantages can also be mentioned, such as more freedom in the choice of thermocouple
locations, easy and low cost apparatus, the short time duration of the heat flux input, and the good accuracy of the
obtained results.

2. Theoretical fundamentals

The technique proposed here is based on the use of an input/output dynamical system (Fig. 1) that is obtained from
a thermal model (Fig. 2). In Figure (1), φi represents the heat flux, Ti the temperature and i the index to describe the
location of the respective heat flux and the temperature in the sample. The thermal model can be given by a one-
dimensional or two-dimensional model as shown in Fig. (2). In both cases the input signal X and output signal Y must
be obtained by solving the respective heat diffusion equation with the appropriate boundary conditions. The one
dimensional heat diffusion solution can be analytically obtained just involving the variables φi and Ti in lower and upper
surfaces (Guimarães et all, 1995). Yet, for the two-dimensional case, the lateral boundary conditions (convection) need
to be known additionally. Once in this work, only simulated case are studied it will be considered that the heat transfer
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coefficient, h, is known and equal to 10 W/m2K without generality losses. In practical measurements, this boundary
condition can be evaluated by using a good insolating material in the border. It means h could be assumed zero.

     X = φ1(t) + φ2(t)

  Y = Τ1(t) − Τ2(t)

  system

Figure 1. Input/output dynamic system
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Figure 2. Thermal model scheme: a) one dimensional,  b) two-dimensional

The heat conduction problem for each model (Fig. 2) can be described by the heat diffusion equation subject to the
suitable boundary conditions.

One-dimensional thermal model
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Two-dimensional thermal model
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In contrast of previous work Guimarães et all (1995) or Lima e Silva et all (1998) presented an analytical solution
for the one dimensional case, in this work not only has the two dimensional model performed numerically but also the
one dimensional. The great advantage of this procedure is the easiness in data experimental manipulation.

3. Method proposed

As in Guimarães et all (1995) a frequency response, H, can be defined from the input/output dynamic system, as
shown in Fig. (1). In this case, it can be written
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In this domain, frequency variable f replaces the independent variable t. The frequency response, X(f) and Y(f) are
obtained by applying the Fourier transform to X(t) and Y(t) signals, it means,
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where j= 1−  is the imaginary unit.

The response frequency can, then, be obtained by multiplying Eq. (3) by the complex conjugate X(f),
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Fourier Transforms of X(t) and Y(t) are performed numerically by using the Cooley-Tukey algorithms (Discrete
Fast Fourier Transform), where Sxy is the cross-spectral density of X(t) and Y(t) and Sxx is the auto-spectral density of
X(t) (Bendat and Piersol, 1986). Equation (6) is more suitable to calculate H(f) due to the more stable behavior of the
spectral density, with f. In polar form, H(f) can be written as:

)()()( fjefHfH ϕ−= (7)

where, )()()( fSfSfH xxxy=  is the modulus of H(f), and )()( ff xyϕϕ =  is the phase angle. In the same way, xyS

and ϕxy , are the modulus and phase of xyS , respectively. The auto-spectral density function xxS  is a real function. The

transformed frequency response in the f-x plane, is, thus, a complex variable, with a modulus H  and a phase factor ϕ .

3.1. Thermal diffusivity estimation: frequency domain

The great convenience of working in the frequency domain is the fact that phase angle is a function that depend
only on the thermal diffusivity α (Guimarães et all, 1995). The basic idea here is the observation that the delay between
the experimental and theoretical temperature is an exclusive function of α. So, the minimization of an objective
function, Sp, based on the difference between of the experimental and calculated values of the phase is the way to
determine the thermal diffusivity. This function can, then, be written by

( )2∑ −= tepS ϕϕ (8)

where eϕ  and tϕ are the experimental and calculated values of the phase H respectively. The theoretical value is
calculated by using the mathematical model, i.e., using the solution of the heat diffusion problem to one or two
dimensional model, Eq.(1) or Eq.(2). In this case the phase angle can be obtained by
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where Re(H) and Im(H) are, respectively, the real and imaginary parts of H.

The values of α will be supposed to be those which minimize Eq. (8). In this work this minimization is done by
using the golden section method with polynomial approximation (Vanderplaats, 1986)

3.2. Thermal conductivity estimation: time domain

Once the thermal diffusivity value is obtained, a usual objective function based on temperature error can be used to
estimate the thermal conductivity. In this case, there are no identifiability problems once just one variable is being
estimated. Therefore, the variable λ will be supposed to be that which minimizes the least square function, Smq, based on
the difference between the calculated and experimental temperature. Therefore the objective function can be written by
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where Yj(t) is the experimental temperature and Tj(t) is the calculated temperature, n is the total number of
measurements and s represents the number of sensor.

As mentioned before, the values of Tj(t) come from the one of the models given by the Fig. (2) and the optimization
technique used is the golden section with polynomial approximation.

4. Numerical simulation data

Experimental data are supposed to be simulated by using numerical values. The procedure used here simulates
these measured temperatures introducing random errors ε to the exact temperatures as

( ) ( ) ε+= tyxTtyxY kjkj ,,,, exact (11)

where the exact temperature Texact is determined from the solution of the direct problem, Eq.(1) or Eq.(2), by using the
thermal properties and geometrical dimensions presented in Tab. (1). The value of ε is within ± 0.3K, which
corresponds to 6% of Ymax.

Table 1 - Thermal properties and geometrical dimensions

Dimension
(mm)

Y(xj,yj)  location
(mm)

time
sample

(s)

λ
(W/mK)

α
(m2/s)

Sample Model

L W        x                           y

1D 20 - 0,0              17,0 1AISI 304
2D 20 50 50,0               3,0 1 14,9 3,95 10-6

1D 20 - 0,0              17,0 16
PVC 2D 20 50 50,0               3,0 16 0,16 1,30 10-7

Figure (3) and Figure (4) present typical heat flux signals that were simulated to be imposed each sample. The time
duration of heating was approximately 50 seconds. For each experiment simulated 1024 points were taken with a time
interval of 1 or 16s as shown in Tab. (1) Figures (5)-(8) present the temperatures response for each sample and its
respective thermal model.
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Figure 3. Heat flux evolution applied to AISI 304 Figure 4. Heat flux evolution applied to PVC
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Figure 5. Temperature evolution to AIS304 sample: Figure 6. Temperature evolution to AIS304 sample:
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Figure 7. Temperature evolution to PVC sample: Figure 8. Temperature evolution to PVC sample:
   1D model  2D model

5. Experimental considerations and sensitivity analysis

A great attention should be given when using experimental techniques in conductor materials. For example, a
model based on one-dimension hypothesis is harder to execute than for non-conductors samples. In addition to the two
dimensional difficulty, there is the thermal contact resistance problem. Whereas for non-metallic materials this
resistance can be neglected, for conductors this problem is delicate and needs to be considered. A method that considers
two-dimensional effects and has an experimental apparatus that minimizes the contact resistance can be an alternative
solution. In order to illustrate these points, Figure (9) shows schematically the thermal contact problem for one-
dimensional model apparatus and a possible solution given by a two-dimensional version with alternative thermocouple
location.
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Figure 9. Apparatus experimental scheme: a) one-dimensional assembly; b) two-dimensional assembly

It can be observed that in the two-dimensional alternative scheme (Fig. 9b) the thermal contact problem is
minimized beside the fact that this model is able to consider any lateral heat losses. To assure the success of the two-
dimensional model is necessary to investigate its ability to estimate the parameters. Sensitivity coefficient analysis is
one way to demonstrate this. These coefficients can be defined as the first derivative of the dependent variable (ϕ or T)
with respect the parameter to be estimated α or λ (Beck and Arnold, 1977).

Sensitivity coefficients are very important because they indicate the magnitude of change of the response the
function of interest due to perturbations. These coefficients play an important rule in the identifiability problem. Several
examples can be given for which one cannot uniquely estimate all the parameter involved. One identifiability criterion
given by Beck and Arnold (1977) says that parameter can be estimated if the sensitivity coefficient over the range of the
observation are not linearly dependent. Besides this behavior, the sensitivity coefficient should have larger values as
possible. This criterion is used to determine if the parameter can be simultaneously estimated without ambiguity. In this
case, these coefficients can be given by:
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where α,TX  and λ,TX  represent the sensitivity coeficient of the phase angle with respect to thermal diffusivity and
thermal conductivity respectively in time domain. In order to obtain a better comparison these coeeficients are
normalized as
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where αϕ ,X  and λϕ ,X  represent the normalized version of α,TX  and λ,TX , respectively. The behavior of these
sensitivity coefficients are shown in Fig. (10).
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Figure 10. Sensitivity coefficients, XT,α and XT,λ  a) 2D thermal model: AISI304 b)2D thermal model PVC



It can be noted in Fig. (10) that the sensitivity coefficients, XT,α and XT,λ seem to be correlated once the shape of
both are nearly symmetrical. This fact indicates that α and λ can not be estimated simultaneously if just the range of
temperature in time domain is used. This behavior occurs for both samples (PVC and AIS304) and thermal model (1D
and 2D). The comparison between XT

α and XT
λ to the 1D thermal model is omitted here due the space limitation.

The behavior of XT,α and XT,λ in time domain is the main motivation to propose the thermal properties estimation in
two independent ways: frequency domain to estimate α and time domain to estimate λ. A new sensitivity coefficient
can, now, be defined, as the coefficient of phase angle with respect to the thermal diffusivity. This coefficient can be
written by

α
ψ

αϕ ∂
∂

=,X (16)

or in a normalized version as

α
ψ

ψ
α

αϕ ∂
∂

=,X (17)

Figure (11) and Figure (12) present the behavior of coefficients Xϕ,α and XT,λ for both samples simulated. It should
be mentioned that if only one variable for each minimization is necessary, the process of estimation is independent and
therefore there is no limitation related to the behavior of the coefficients be or not to be proportional. Another
information can also be inferred from Fig. (11) and Fig. (12). Once Xϕ,α has larger values than XT,λ the thermal
conductivity estimation in time domain is expected to be more sensitive to measurement uncertainties. The exclusive
dependence of thermal diffusivity in phase angle was proved by Guimarães et all (1995) and will not be presented here.
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6. Results

Typical input and output signals are shown in Fig. (13) and Fig. (14) and Tab. (1) for both samples simulated.
One and two dimensional model normalized results are shown in the same figure to allow a better comparison. The
signals have dimensionless values and are defined by

maxΧ
ΧΧ =  and 

maxΥ
ΥΥ =  where Xmax and Ymax represent the maxim values to input/output signals.
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Figure 13. Input/output signals to AISI 304 sample a) 1D thermal model b) 2D thermal model
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Figure 14. Input/output signals to PVC 304 sample a) 1D thermal model b) 2D thermal model

Phase angle for both samples and models are shown in Fig. (15). It can be noted that the phase angle has a larger
range in thermal diffusivity dependence than one-dimensional model what assures better results of estimation. The
results of thermal diffusivity estimation process are presented in Tab. (2)  and Tab. (3).
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Figure 15. Phase angle a) AISI 304 sample  b) PVC sample

Table 2 presents results for α estimation without adding random errors. It can be noted that despite the large range
of search interval or initial guess the estimated value to the thermal diffusivity corresponds exactly to the expected
value (Tab. 1). The same behavior can be noted for thermal conductivity estimation without random errors, Tab. (3).
This procedure indicates the ability to estimate both properties simultaneously.

Table 2. Thermal diffusivity estimated process whitout adding errors

Sample model search
interval

iteration objective function [rd2]
initial              final

α
(m2/s)

1D 0.4913608                   0.0AISI 304

2D
10-8 to 10-4 30

0.7271634                   0.0
3,95 10-6

1D 11.49199                     0.0PVC

2D 10-8 to 10-6 30 1.050394                     0.0 1,30 10-7

Table 3. Thermal conductivity estimated process whitout adding random errors

Sample model Search
interval

Iteration Objective function [0C2]
initial              final

λ
(m2/s)

1D 78532.04                0.0AISI 304

2D
0,1 to 100 30

371643.3                0.0
14,9

1D 0.1123090              0.0PVC

2D 0,1 to 100 30 2.185268                0.0 0,16

Before to deal with a real case, an error analysis should be done. So as discussed before, the influence of
uncertainty measurement can be verified by adding random noise to the exact temperature calculated from the model,
Eq. (11). Table (4) and Table (5) present the results for two-dimensional model. The thermal model is proposed by Fig.
(2) and simulated thermocouple locations are given in Table (1).

Table 4. Thermal diffusivity estimated process with noise errors addition

sample Search interval Iteration objective function [rd2]
initial                   final

α
(m2/s)

error
(%)

AISI 304 10-8 to 10-4 30 0.4850698                  1,44 x 10-10 3,8745 10-6 1.91

PVC 10-8 to 10-6 30 11.49744               7,255869 x10-9 1,296185 10-7 0.29



It can be observed in Tab. (4) that the addition of random errors has resulted in an uncertainty of order of 2% in the
estimated value to thermal diffusivity for AISI 304 and 0.29% for PVC sample (Tab. 4). Table 5 presents the estimation
process to the thermal conductivity. The initial tentative to estimate λ couldn't be considered with success once the
value obtained presented up 25% of uncertainty. The difference in the estimation behavior can be credited to the
procedure of estimation and random error characteristics. The random error has more effect to higher frequency while
the thermal diffusivity is determined in lower frequency. However, the effect of uncertainty is over all data in time
domain. Once the temperature difference is used to estimate the thermal conductivity the noise of a single experiment
can produce serious consequences. These effects can be minimized in a real process trough raising the experiment
number. These procedure reduce the influence of random error once additive errors, in contrast to multiplicative errors,
do not vary greatly with the independent variables and its value can be considered zero on the average. Fitting a curve
adjusts in simulated data errors given by Eq. (11) here simulates increasing of number of experiment. The results are
shown in Tab. (5). As discussed, the adjustment procedure doesn't affect the thermal diffusivity estimation due to the
frequency range of estimation.

Table 5 - Thermal conductivity estimated process with noise errors and fitting adjustment

sample Search interval Iteration Objective function [0C2]
        initial                         final

λ
(W/mK)

error
(%)

AISI 304 0,1  to 100 30 9,311774 106               0.131979 14,70823 1,28

PVC 0,1  to 100 30 905,1586                  0.039147 0,159821 0,11

7. Conclusion

The development of a thermal identification technique to be applied in different materials (conductor and non-
conductor) is presented. The technique based on signal treatment in both time and frequency domain of a same data has
shown excellent results considering simulated data. The independent process for the thermal properties identification
assures the obtained values of α and λ to be unique. The dynamic model used allows one or two-dimensional treatment
and the use of optimal sensor locations. The new technique has presented good results for two different simulated
materials: a stainless steel (AISI304) and a polymer (PVC).
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