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Abstract. In many cases the mass and energy conservation equations are strongly coupled, specially at the boundaries of 
porous media. This strong coupling may easily cause numerical divergence when a not very robust solver is used. A 
dimensionless number that could numerically express when numerical instability arises is the Biot number for moisture 
diffusion. This number gives the relation between the convective and diffusive resistances, which means that, for high Bim 
numbers, the wall hygric resistance is much higher than the corresponding surface resistance. Another important 
dimensionless is the mass Fourier number, expressing a mesh-size parameter that could be related to a convergence error 
function. Therefore, we present a mathematical model to solve a heat and mass transfer problem by using two algorithms 
and carry out a sensitivity analysis of numerical performance in terms of: i) moisture and heat Biot Numbers; ii) moisture 
and heat Fourier Numbers; iii) Luikov number and iv) Posnov number. It is noted, for traditional algorithms such as 
TDMA, the risk of divergence arises very quickly as the moisture Biot number increases, showing a high sensitivity to this 
dimensionless parameter, which can be even higher than the one caused by the mass Fourier number. 
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1. Introduction 
 

In many cases the mass and energy conservation equations are strongly coupled, specially at the 
boundaries of porous media. This strong coupling may easily cause numerical divergence when the solver is 
not robust. 

A dimensionless number that could numerically express when numerical instability arises is the Biot 
number for moisture diffusion. This number gives the relation between the convective and diffusive 
resistances, which means that, for high Bim numbers, the wall hygric resistance is much higher than the 
corresponding surface resistance. Another important dimensionless is the mass Fourier number, expressing a 
mesh-size parameter that could be related to a convergence error function. 

Dantas et al. (2003) presented the solution for an inverse problem of parameter estimation in a 1-D 
capillary porous medium, by using the well-known dimensionless Luikov’s model. They showed that is 
possible to simultaneously estimate the Luikov number, the Kossovitch number and the Biot numbers for heat 
and moisture diffusion. In a previous work (Dantas et al., 2002), they concluded that those parameters could 
be accurately estimated by using only temperature measurements in the inverse analysis. 

In order to analyze the dimensionless numbers influence, mainly the one caused by the Biot numbers, we 
have implemented a dynamic heat and moisture transfer model. For the walls, sensible and latent surface 
convection, absorbed solar radiation, heat and mass transfer through the wall, and vapor/liquid phase change 
are considered. The walls are described mathematically using the model of  Philip and DeVries (1957) in 
which vapor and liquid flow under moisture content and temperature gradients. In this model, heat, vapor and 
liquid flow are taken to be simultaneous. Physical quantities, such as mass transport coefficients, thermal 
conductivity and specific heat, are variable and dependent of wall moisture content, but moderately 
temperature dependent. 

In this papers, results in terms of numerical convergence errors in terms of Biot number for moisture 
diffusion are presented. Additionally, effects of Biot and Luikov numbers on the one-dimensional heat flux 
through a lime mortar wall are presented as well.  
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2. Mathematical Model 
 
The governing partial differential equations are given by Equations (1) and (2). They were derived from  

conservation of mass and energy flow in an elemental volume of porous material. 
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The parameter mc  is the specific heat, which is a function of θ . The quantityλ  is the thermal 

conductivity of the medium in the absence of phase change. It usually depends strongly on θ  and weakly on 
T. 

The vapor and liquid flows are expressed in terms of transport coefficients, D, associated with the thermal 
and moisture gradients. According to Philip and DeVries (1957), the equations are: 
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3. Boundary Conditions 
 

The associated conservation equations at the outside and inside wall surface are as follows. For the outside 
surface (x=0), it was considered the wall is exposed to short-wave radiation, convection heat and mass transfer, 
and phase change. Thus, the energy balance becomes 
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where: )( 0=∞ − xTTh represents the heat exchanged with the outside air, described by the surface 

conductance h , rq α is the absorbed short-wave radiation and ( )0,, =∞ − xvvmh ρρ , the phase change energy 

term. The solar absorptivity is defined as α and the mass convection coefficient as hm which is related to h by 
the Lewis’ relation. 

The mass balance at the outside surface (x=0) is described as, 
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where: 
D D Dl vθ θ θ= + ; 
D D DT Tl Tv= + . 

The same above equations apply to the inside surface (x=L), with the omission of short-wave related 
terms. 

 
4. The MultiTriDiagonal-Matrix Algorithm 
 



Mendes and Philippi (2003) presented a generic algorithm to solve strongly-coupled heat and mass 
transfer equations, which provides all the dependent variable profiles simultaneously at a given time step. The 
use of this algorithm avoids numerical divergence caused by the evaluation of coupled terms from previous 
iteration values. In this way, mathematical methods can become stable and closer to the nature of the physical 
phenomenon of combined heat and mass transfer. 

Discretization of conservation equations in the physical domain leads to following system of algebraic 
equations, which can be written as 

i1ii1iiii DxCxBxA ++= −+ ... , (6) 

where x is a vector containing the m dependent variables jϕ , 

[ ] t
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and, differently from the traditional TDMA, coefficients A, B and C are 2nd order tensors, in which each line 
corresponds to one dependent variable. The elements that do not belong to the main diagonal are the coupled 
terms for each conservation equation.  

Vector xi  can be expressed as a function of xi+1, 

i1iii qxPx += +.  (8) 

where Pi is, now, a 2nd order  tensor. 

Replacing equation (8), evaluated at point I-1 in (6), the following equation is obtained  
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Writing equation (9) in an explicit way for xi,  
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Thus, a Comparison between equations (10) and (8) gives the following new recursive expressions, 
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Once those matrix coefficients are calculated, the back substitution, in reverse order, makes that all 
vector xi elements appear quite mechanically. 

The use of this new algorithm makes the systems of equations to be more diagonally dominant and its 
use is illustrated in the sections below, for the study of heat and mass transfer through a porous medium. 
 



 
5. Nondimensionalizing the Governing Equations 

 
Considering constant all the coefficients, the energy and mass conservation equations can be written as: 
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where: αap is the thermal diffusivity (λap/C); 

    C   is the thermal capacity (ρcm). 
 

In many Engineering applications, the second right-hand term of the energy conservation equation which 
is directly associated to the phase change term can be disregarded when compared to the heat diffusion term. 
In this way, the energy conservation equation is reduced to: 
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Considering the following dimensionless groups, 
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where T0 is the highest temperature reached and T∞ the lowest one, and assuming a time constant - τ==- 

associated to the development rapidness of moisture content profile (τ
θ

= L
D

2

), the governing equations are 

written as: 
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The Luikov and Posnov numbers are important parameters to analyze the coupling intensity of 

simultaneous heat and moisture transfer problems in porous media. The Luikov number represents the 
evolution rapidness between moisture content and temperature spatial distributions. Thereupon, for low 
Luikov numbers, temperature profiles are developed much more rapidly than moisture content ones. 

The Posnov number reports the importance of temperature gradients on the moisture transport through 
porous materials. Consequently, for high Posnov numbers, the moisture transport occurs predominantly due to 

temperature gradients. Therefore, This dimensionless number significance arises when  
∂θ
∂x

→ 0 , which may 

happen in thick walls composed of low Luikov number materials. 
Discretizing the nondimensional governing equations, the following mass conservation equation is 

obtained: 
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Similarly for the energy conservation equation, viz.: 

( ) ).()1()1()(2 0 iLuTiTFoiTFoiTFoLu mmm +−++=+  (20) 

 
Therefore, the following MTDMA matrix coefficients are obtained for the inner nodes of the physical 

domain: 
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The Biot numbers for heat and mass express the relative importance of thermal and hygric resistances, 

respectively, within a solid material. In this way, for a high Biot number for mass (Bim),  the convective 
transport of moisture at the boundaries is much higher the diffusive transport through the porous medium. 
Therefore, a high Bim wall has a large relative hygric resistance. Analogously, the same analysis can be done 
for heat flux using the BiT number. 

The Fourier numbers for heat and mass are nondimensionalized forms for the time variable. The ratio 
between Fom and FoT gives the Luikov number, i.e., the relative development rapidness between the moisture 
content and the temperature profiles. 

 
6. Nondimensionalizing the Boundary Condition Equations 
 

In the same way, the boundary conditions are leaded to: 
 

• = Mass conservation equation (x=0): 
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The vapor concentration difference, vρ∆ , in Eq. 22, is normally determined by using the values of 
previous iterations for temperature and moisture content, generating additional instability. Due to the 
numerical instability created by this source term, the solution of the linear set of discretized equations 
normally requires the use of very small time steps, which can be exceedingly time consuming, especially in 
long-term whole-building hygrothermal simulations or soil simulations or even in drying process analysis. 

In order to rise the simulation time step, Mendes et al. (2002) presented a mathematical procedure to 
calculate the vapor flow, independently of previous values of temperature and moisture content. In this way, 
the term ( vρ∆ ) was linearized as a linear combination of temperature and moisture content, viz.,  
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Replacing Eq. (23) on Eq. (22), viz.:  
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The sub-index “ext” stands for the M1 coefficient calculated using the external conditions. However in 

Eq. (24), the coefficient M1,ext is followed by the Posnov number as it multiplies the dependent variable T.  
Thus, the coefficient M1,ext is redefined as: 
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Rewriting Eq. (24) in terms of dimensionless parameters, viz.: 
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which can be regrouped focusing on the MTDMA use as: 
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• = Energy conservation Equation (x=0) 

 
Replacing the vapor difference term (Eq. 23), the discretized energy co

as 
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Rewriting Eq. (27) in terms of dimensionless, we have: 
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Now, the MTDMA matrix-coefficients can be defined as  
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The discretized equations for the internal surface are similar to those of the external side, except for the 

absence of the short-wave related term. 
 
7. Results and Discussions 

 
The above equations are solved with a finite-volume approach using a fully-implicit solution scheme 

with coupling between the conservation equations. Using the Patankar (1980) method with uniform nodal 
spacing and a tridiagonal-matrix solution algorithm, a C program solves the temperature and moisture 
content distributions iteratively (TDMA) at each time step or simultaneously (MTDMA). The 
thermophysical properties were obtained from Perrin (1985). 
 

Comparative studies between the traditional and the new methods are presented. First, it is analyzed the 
influence of dimensionless numbers on the stability of the traditional method and then comparisons are 
carried out in terms of heat flux.  

 
7.1 - Dimensionless numbers influence on numerical method stability 
 

Besides the Biot number for moisture diffusion (Bim), another important dimensionless is the mass 
Fourier number, 2

m x/tDFo ∆∆= θ , which expresses a mesh-size parameter that could be related to a 
convergence error function δ, defined as the relative difference between the wall surface moisture content 
values:  
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Fig. 1 illustrates the influence of the Biot and Fourier numbers on the convergence error function. It 
is noted, for the traditional TDMA algorithm, as the Bim increases the error function goes up very quickly 
showing a high sensitivity to this dimensionless number, which can be even higher than that caused by the 
mass Fourier number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Convergence error as a function of Biot number for moisture Diffusion. 

The mass conservation equation at the boundaries could be also written as: 
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The system of equations is stable when the Eq.-(30) left-hand term is much higher than the source terms 

( from the 2nd to the 4th right-hand terms). The last right-hand term is normally lower than the 2nd and 3rd ones. 
As the second right-hand term is comparable to the first parcel at the right hand side of the equation above, it 
is believed that a good stability criterion, dependent on the boundary condition, but independent on the 
Fourier number, could be proposed as: 
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which can be satisfied for materials with high moisture diffusivity or for very low permeance surfaces, under 
any boundary condition value. However, as it can be seen in Fig. 1, the higher the Fom number the lower the 
Bim number to avoid numerical divergence. 
 

7.2 - Constant Coefficient Analysis - Dimensionless numbers effects on Heat Flux  
 

The Biot number, for either mass or energy conservation boundary condition equation, expresses the 
relative contribution of thermal hygric resistances within the solid porous media matrix. For instance, when 
the mass Biot number (Bim) is high, the convective moisture transport within the air adjacent to the solid 
surface is much greater than the diffusive transport of moisture through the porous medium. Therefore, a 
high-Bim wall has an elevated hydraulic resistance. Analogously, heat flux analyses can be made in terms of 
BiT. 

The Fourier numbers for heat and mass are dimensionless forms for the independent variable time. It is 
noticed that the ratio between Fom and FoT  gives the Luikov number, i.e., the ratio between the development 
rapidness of moisture content and temperature profiles. For building material, except wood similar materials, 
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the Luikov number is very low (Lu < 0.01), which makes possible to decouple the two fields (moisture 
content and temperature) so that the temperature profile is rapidly established independently on θ Variations. 
However, for the boundary control volumes, the coupling between T and θ is very important due to water 
vapor exchanged between the air and the surfaces. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 2: Bim , Lu and Pn Effects on YHF for BiT = 0.01 and FoT = 1. 

 
Figures 2 and 3 show the yearly-integrated conduction heat flux (YHF) variation with Lu, Pn, Bim and 

BiT by using the MTDMA. The YHF quantity is an important parameter used in building material simulation 
codes. 

It is noticed, from Figures 2 and 3, the lower Luikov number the higher the inward conduction heat flux. 
This can be explained by the fact that high Luikov number walls are well insulated, i.e., they normally have a 
low thermal diffusivity. On the other hand, the presence of moisture, under a certain range of mass Biot 
number, can cool down walls due to evaporation loads, which can reduce thermal loads when applied to 
buildings integrated to HVAC systems. Fig. 2 presents a low influence of Posnov number. This number 
becomes more important as the Bim and Lu numbers increase. For very low Lu numbers, the temperature field 
gets much more dependent on boundary conditions than the previous temperature value, i.e., the energy 
conservation equation transient term becomes smaller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3: BiT and Lu Effects on YHF for Bim= 10000, FoT = 1 and Pn = 0.01. 
 

Fig. 3 shows a lower sensitivity to BiT for high Lu numbers, which may be explained by the implicit 
thermal diffusivity in the Luikov number.  

For the boundary condition nodes, we have noticed the predominancy of a new dimensionless group 
given by the product of Fourier and Biot  numbers – Eqs. (26 – 28) – and that depends no longer on transport 
diffusive coefficients, but on air-side convection coefficients, which implies that stability may be related 
much more with psychrometrics variations of the free air flow adjacent to the wall than variations present 
within the wall. However, an exception should be made to low Biot number walls. 

Y
H

F
F

Y
H

F 

0
10
20
30
40
50
60
70
80
90

100

100 1000 10000
Bim

CA
E 

(M
W

h/m
²)

Pn=0.01 e Lu=0.001

Pn=1 e Lu=0.001

Pn=0.01 e Lu=0.1

Pn=1 e Lu=0.1

0
20
40
60
80

100
120
140

0.001 0.01 0.1

Bit

CA
E 

(M
W

h/m
²) 0.001

0.01

0.1

1

PN=0.01
Lu



The parametric analysis presented in the section 7.2 should be carefully examined as it is useful on the 
comprehension of physics behind the strongly-coupled heat and moisture transfer phenomenon and helpful on 
the results interpretation. However, most of the analysis was carried out by using a constant coefficient model 
and, by the fact, when a parameter is varied and the remaining are fixed, a parameter interrelation is hidden 
and it may bring some mistakes. For example, a Bim variation implicitly modifies also the Lu number as it 
contains Dθ as a common term. 
 
8. Conclusions 
 

It is noted, for traditional algorithms such as TDMA, the risk of divergence goes up very quickly as the 
moisture Biot number increases, showing a high sensitivity to this dimensionless parameter, which can be 
even higher than the one caused by the mass Fourier number. 

The MTDMA (MultiTriDiagonal-Matrix Algorithm) was utilized to solve the heat and mass transfer 
governing equations in porous media. This method avoids numerical instabilities (Mendes and Philippi, 2003) 
by solving simultaneously the governing equations, allowing the use of high time steps which are very 
important for long-term simulation of combined heat and mass transfer such as in building materials  and 
drying processes, with transport coefficients highly moisture-content-dependent.  

We have noticed of a new dimensionless group given by the product of Fourier and Biot numbers, which 
represents the difficulty of introducing energy and moisture into the porous structure when the simulation 
time step is high, i.e., time step has to be reduced when Biot number is high in order to reach numerical 
convergence. On the other hand, this effect that causes numerical divergence can be greatly reduced when a 
robust algorithm such as MTDMA is used and the boundary condition terms associated to de vapor 
concentration difference are linearized in terms of temperature and moisture content differences. 

The Biot number for moisture diffusion has also shown that it is possible to speed up simulations for high 
Bim Number walls so that further research work is recommended to be carried out on that direction in order to 
improve computer run time of simulation codes such as the Domus program. 
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