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Abstract. A new hybrid numerical/experimental technique for stress assessment, which explores the influence of stresses on dynamic
responses of structures, is  used for the identification of weld-induced residual stresses in rectangular plates . This technique, named
SIFDRIM (Stress Identification from Dynamic Responses - Inverse Method), consists of using modal properties, like a set of natural
frequencies,  to identify the parameters of a given mode for the stress distribution over the plate. A parameterized stress model
suitable to the case of welding residual stresses is presented, in terms of  a differential equation that relates Airy’s stress function to
the plastic strains resulting from the welding process. From this stress function, the stress components yx σσ , and xyτ (assuming

plane stress state) can be assessed. To demonstrate the feasibility of the method, it is used tor the assessment of stresses in a  TIG
(GTAW) welded thin rectangular steel plate,  based on  experientally measured natural frequencies and numerically computed weld-
induced stress distributions obtained from the literature.
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1. Introduction

The assessment of welding residual stresses is a topic of great technological interest, since these stresses
influence, to a large extent, the quality of welded manufactured parts in terms of distortion, corrosion, buckling, crack
initiation and propagation and mechanical resistance (Parlane et al, 1981 ).

The assessment of residual stresses is often a difficult task. Existing experimental techniques of stress analysis
can be divided in two groups: techniques applicable to in-service structures, and those applicable to structures tested in
laboratory environment. As examples of the first group, one can cite X-rays, Hole-center drilling, ultrasonic techniques,
Neutron difraction technique and holography. On  the other hand, techniques intended to laboratory environment are,
for instance, Extensometry, Photoelasticity and Moiré techniques. These experimental techniques have inherent
drawbacks, like being costly and time consuming, being destructive or semi-destructive (which is the case of Hole-
center drilling, for instance). Moreover, in most cases, stress measurements are provided at one point at a time, and are
often restricted to specific types of materials (such as Transmission Photoelasticity). Numerical prediction of residual
stresses is also difficult, due to the complexity of the welding process (Radaj, 1992).

Recent works have proved that residual stresses influences the dynamic behaviour of welded structures (Kaldas
and Dickinson, 1981, and Vieira Jr. et al., 2002). This characteristic indicates the possibility of using modal parameters
obtained from dynamic tests (like a set of natural frequencies) to get information about the stress state within the
structure. A method has been developed by the authors to perform this identification using optimization techniques to
assess the parameters of a given stress model. This method has been applied to identify stress state of plates subjected to
in-plane loads in both theoretical and experimental studies (Vieira Jr. and Rade, 2003). In the present work, it is
investigated the use of  the method for the identification of weld-induced residual stress in a thin rectangular welded
plate.

2. Theory

Figure (1) illustrates the plate of dimensions htBL ×× , being also depicted an element which is acted upon by normal

and shear stress components yx σσ ,  and xyτ .
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Figure 1. Plate dimensions and stress components in an element of the plate

According to Kirchhoff’s theory, the following assumptions are adopted:
- plate thickness is small and constant. External faces are parallel to the middle plane (which is assumed to

coincide with x-y plane);
- cross-sections remain plane and perpendicular to the middle plane;
- plane stress state is assumed, transverse shear stresses are neglected.

Neglecting dissipation effects, the Rayleigh-Ritz variational method is used to derive the eigenvalue problem associated  to
the flexural vibrations of the plate, taking into account the membrane stresses. With this aim, Hamilton principle is evoked:
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where T is the kinetic energy and V is the potential energy of the plate. These energies are given by the following
expressions (Géradin and Rixen, 1997):
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where m indicates the mass of the plate per unit of surface, ( )[ ]23 112 ν−= htED  is the plate flexural stiffness,

yx σσ ,  and xyτ designate the in-plane normal and shear stresses, respectively and ( )tyxw ,,  represents the transverse

displacements.

According to the Rayleigh-Ritz method, the plate transverse displacement field is assumed to be expressed as a
truncated linear combination of arbitrarily selected admissible functions. Following the approach adopted by Kaldas and
Dickinson (1981), these functions are chosen to be the eigenfunctions of vibrating beams satisfying the geometrical
boundary conditions of the plate in directions x and y. Thus, one writes:
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where p, q are the numbers of eigenfunctions considered in the truncated series in x and y directions, respectively; Aij

are unknown generalized coordinates and ( )xiφ  and ( )yjψ   designate the beam eigenfunctions.

According to Young (1950), suitable beam eigenfunctions are combinations of trigonometric and hyperbolic
functions of the form:
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where Ai, Bi, Ci, Di, iη  Ei, Fi, Gi, Hi, iξ  are coefficients depending on the boundary conditions for the i-th vibration
mode. Young(1950) provides the numerical values of these coefficients for three combinations of boundary conditions:
clamped-clamped, clamped-free and free-free.

To obtain the eigenvalue problem, time-harmonic responses are assumed in (4), according to:

( ) ti
ijij eAtA ω=

The stationarity condition (1) is then enforced with respect to the qp ×  generalized coordinates ijA , leading to

the following eigenvalue problem:

[ ] [ ]( ) { } { }0=− rr AMK λ                                                                                                                                  (5)

where the eigenvalues are related to the natural frequencies according to DLt rhr
42ωρλ =  and the eigenvectors

{ }rA are formed by the generalized coordinates ijA .

The numerical solution of equation (5) provides the natural frequencies of the plate subjected to the membrane

stresses. The corresponding mode shapes can be obtained by introducing the eigenvector components ijA  into (4):
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The general forms of the elements of matrices [ ]( )qpqpK ⋅×⋅ and [ ]( )qpqpM ⋅×⋅  are detailed in the following.
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It should be noted that in the equations above, the indices must be contracted to obtain the matrix eigenvalue
problem in the standard form, as given by (5).

It should be also pointed out that the influence of the membrane stresses on the system dynamics is represented
by the last term of equation (7), which is referred to as  initial-stress stiffness matrix. As can be seen, this matrix is
linear in the stress components.

3. The stress identification method (SIFDRIM)

SIFDRIM is a hybrid numerical/experimental method which explores the fact that stress state influences the
dynamic responses. Stress identification is treated as a paremeter identification problem, using parameterized models to
represent the stress state. The identification is carried out by finding the values of the parameters that lead to the
minimum value of a cost function that expresses de difference between model-predicted and experimentally measured
natural frequencies (Vieira Jr. and Rade, 2003). To predict the dynamic responses taking into account  the plate stress
state, the Rayleig-Ritz approach, developed in Section 2, is used . For optimization, Genetic Algorithms are used.  In
Figure (2), the block-diagram of the identification  method is depicted.
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Figure 2. Block-diagram of the SIFDRIM ( Stress Identification from Dynamic Responses Inverse Method )

4. Parameterized stress model for weld-induced residual stresses

The development of welding  residual stresses can be mathematically modeled by the following differential
equation  (Kamtekar, 1978 ):
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Hence, upon knowing the plastic strain distributions, it is possible to calculate the Airy’s stress function by
solving equation (9) and, then, to obtain the distributions of the stress components through the relations:
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In most of the cases, it is convenient to assess both Airy’s stress function and stress components by using
numerical methods, such as Finite Difference Technique.

It was observed from various numerical simulations, that for the case of welding, the right-hand side R of Eq.
(9) often presents (with some approximation) the typical pattern shown in Fig. (3.a). In Figure (3.b), it can be seen how



this special feature can be explored in the development of a parameterized model of the right-hand-side term R in
Eq.(1), which presents the very desirable characteristic of depending on a few parameters ( 21 , pp and 3p ). It is
important to point out that the possibility of modeling the term R of Eq. (9) is equivalent to be able to model the Airy’s
stress function U and, as a result, the stress components yx σσ , and xyτ . Nevertheless, this approach gives rise to the

additional need of solving Eq. (9) by numerical procedures, such as the Finite Difference Method.  
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Figure 3. (a) – Proposed model for the distribution of the right-hand side R of Eq. (9);  (b) – Characterization of the
proposed parameterized model in terms of parameters p1, p2 e p3

After the initial development of the three-parameter-model for R , it was proposed to introduce an additional
parameter 4p  which makes it possible to consider a function R  that is not necessarilly constant along the plate length

(x axis). Each element of R  in the finite-difference mesh, denoted by ijR ,  must undergo a correction that depends on

4p  which expresses the characteristic pattern of the variation of R with the x axis, according to Eq. (11). Figure (4)
displays the shape of the correction matrix C along the x axis.

( ) ( )324 ,,1 pppRCpR iijijij +=                                                                                                                    (11)

where:

ijC  : correction coefficient applied to Rij;

( )32 ,, pppR iij : Element of the right-hand side R  before the correction by 4p (like in Fig. (2.a))
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5. Application example

5.1 Studied case

As an application example of SIFDRIM , it was chosen the case studied by Kaldas and Dickinson (1981), of a
254 × 508 × 3.175 mm TIG (GTAW) welded plate. The dimensions, material properties and welding conditions are
shown in Fig. (5). In that work, welding residual stress distributions were assessed by using numerical simulations
based on the Finite Difference Technique . Those authors provided two-dimentional graphics of the stress components

yx σσ ,  and xyτ along some specific plate sections (Fig. (6)). Natural frequencies were both numerically and

experimentally obtained. In the numerical assessment, it was used the Rayleigh-Ritz Method. The numerically obtained
and the experimental values of the ten first natural frequencies are listed in Table 1, considering two conditions
concerning the stress state: stress-free and with welding residual stresses.
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Figure 6. Welding residual-stress components along some sections of the welded plate (Kaldas and Dickinson, 1981)



Table 1 – Numerically and experimentally obtained natural frequencies (from (Kaldas and Dickinson, 1981))

Stress-free With welding residual stresses
Vibrating Numerically Experimental Numerically Experimental

mode obtained obtained
(Hz) (Hz) (Hz) (Hz)

1 66.3 66.1 52.3 51.7
2 82.6 82.3 61.8 60.9
3 182.0 179.6 145.4 141.2
4 184.0 180.0 165.2 160.7
5 271.0 263.0 266.1 256.7
6 319.0 305.0 275.0 265.4
7 322.0 313.0 324.9 316.4
8 365.0 360.0 351.1 347.0
9 447.0 429.0 457.7 438.4
10 498.0 488.0 449.2 440.7

5.2  Initial estimates to the stress-model parameters

In order to estimate order of magnitude of parameters 21 , pp and 3p . in practical welding conditions, one

defines the following  dimensionless thermo-elasto-plastic coefficient as follows:
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 where:

α :  Thermal expansion coefficient; Q  :  Effective power imput; ρ : Density;

E  :  Young’s modulus; v  :   Welding speed; B  :  Plate width;

fy :   Yeld stress; Cp : Specific heat; th  :  Plate thickness

The following expressions, proposed by Vieira Jr. and  Scotti (2003), given in  Table 2, provide initial
estimates of parameters 21 , pp and 4p as functions of tepa . No such approximation is available for parameter 4p .

Table 2 – Approximated values to the stress-model parameters as funtion of tepa

tepa Parameter Approximation expression Approximation

1p ( )44.139.26
1 18.0exp1021.3 teptep aap −×= − 7

1 1005.4 −×=p
4302.0=tepa 2p ( )teptep aap 31.0exp11.0 5.1

2 = 03.02 =p

3p 24.0
3 31.0 tepap = 25.03 =p

Based on the approximated parameter values, the following limits were set to the parameters variation ranges (Table 3).
Some of the variation ranges were set with a tendency to the lower limit, since the approximation expressions were
developed based on another welding process (Submerged Arc Welding) which uses higher welding energies.

Table 3. Variation ranges to the stress-model parameters

Parameter Lower limit Upper limit

1p 7101 −× 4101 −×
2p 0.00 0.05

3p 0.20 0.30

4p 0.20 0.40



5.3 Cost Function

The following cost funtion was defined so as to take into account the well-known steel-welding feature that
Von-Mises stress, in the middle of the welding bead, is equal to the yelding stress limit.
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where:
objF : Cost function;

fn   : Number of  natural frequencies used as input data;
c

if  : i-th calculated natural frequency;
m

if : i-th measured natural frequency;

( )0,2Leσ :  Von-Mises stress in the middle of the welding bead;

yf  : Yelding stress limit of steel (assumed value: 246 Mpa)

6. Results

Table 4 displays the stress-model parameter values obtained with SIFDRIM, and the setup numbers of
individuals and generations used in the Genetic Algorithms program, as well as the final value of the Cost Function.
Figures (7) and (8) show the graphics of stress components yx σσ ,  and xyτ , related to the identified stress-model

parameters. For comparison, the same figures present the stress components resulting from welding numerical
simulation, obtained by Kaldas and Dickinson (1981). Table 5 allows to compare the frequencies used as input data and
those related to the identified stress state.

Table 4.  Stress-model parameters obtained with SIFDRIM, Genetic Algrithms setup and final Cost Function

value

Number of individuals 1000

Genetic Algorithms Number of generations 50

1p 5106231.1 −×
Identified 2p 0.0041

parameters 3p 0.2204

4p 0.2763

Final Cost Function value 0.0486
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Tabela 5. Comparison between calculated natural frequencies  (related to the identified stress state) and the
experimental values of natural frequencies used as input data

Vibrating Natural frequencies (Hz) Percent

mode Calculated Experimental variation (%)

1 54.13 51.70 4.70

2 63.25 60.90 3.87

3 155.14 141.20 9.87

4 166.55 160.70 3.64

5 264.80 256.70 3.16

6 289.65 265.40 9.14

7 324.34 316.40 2.51

8 352.38 347.00 1.55

9 458.79 438.40 4.65

10 464.80 440.70 5.47

7. Concluding remarks

The results allows to conclude about the feasibility of applying the identification method SIFDRIM to the case
of welding residual stress assessment. Good agreement was found between stress components obtained with SIFDRIM
(using experimental natural frequencies of the welded plate) and those resulting of numerical welding simulations.
Nevertheless, additional tests have shown that  the problem of identification of welding residual stresses presents the
characteristic of non-unique solution, which means that two different stress states can lead to the same set of natural
frequencies. In the case of steel welding, this drawback can be easily overcome by considering, as an additional
imformation, the  fact that Von-Mises stress, in the middle of the welding bead, is equal to the yelding stress limit of the
material. It is believed that the method can be extended to structures others than plates.
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