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Abstract. The impact of errors in the innovation correlation functions evaluation, related to the suboptimal filter, on the 
identification of the optimum steady state Kalman filter gains is investigated. An identification algorithm proposed in the literature, 
frequently quoted, is revisited and summarized. Then, as contributions, equations describing this impact are developed. Simulation 
results are presented to show this impact. 
 
Keywords. Kalman filter, identification, estimation. 

 
1. Introduction 
 

The Kalman filter has been widely used in many engineering applications. This is mainly due to its ability of deal 
with linear systems corrupted by uncertainties and provide an optimal state estimate, according to the minimum mean 
square error optimality criteria, in a recursive way. See Anderson et al (1979), Gelb et al (1996) and Maybeck (1979) 
for details. To accomplish this, the process noise covariance matrix Q and the measurement noise covariance matrix R 
must be known. In many practical situations, Q and R are unknown or known only approximately, thereby providing a 
suboptimal filter. Several authors have presented schemes for the identification of the unknown covariances or the 
steady state gain of the optimal filter. Among them, we have Mehra (1970) and Carew et al (1973), whom use the 
innovations covariance as the necessary information to identify the optimum steady state filter gain. Additionally, in 
Mehra (1970), we have an algorithm to identify the unknown noise covariance matrices. In this paper is presented an 
analysis of the impact that errors on the evaluation of the innovation correlation functions have on the identification of 
the steady state gain of the optimal filter, by using the approach proposed by Carew et al (1973), since it is frequently 
quoted and has a formal proof of convergence. 

Some might claim that the linear system assumption, employed here, could be not necessary, since the extended 
Kalman filter could be used to deal with nonlinear systems, corrupted by uncertainties. According to Anderson et al 
(1979), the extended Kalman is a suboptimum filter and provides estimates that are only approximate to the optimal 
ones. Since we are interested on optimal estimates, the linear system assumption is necessary.  

 This paper is organized as follows: in section 2 the problem is presented together with the algorithm proposed by 
Carew et al (1973). In section 3, as contributions, equations related to the impact that errors on the evaluation of the 
innovations correlation functions have on the identification of the steady state gain of the optimal filter are developed. 
Finally, simulation results are presented in section 4. 

 
2. Problem Formulation 

 
Consider a discrete linear stationary multivariable stochastic system, as presented in Carew et al (1973), 
 

kk1k GwAxx +=+  (1) 
 

kkk vHxy +=  (2) 
 

rvdim,rydim,nrHdim,pnGdim,pwdim,nnAdim,nxdim kkkk ==×=×==×==  (3) 
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The sequences kw  and kv  are independent stationary Gaussian white noise sequences with means and 
covariances 
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where {}⋅E  denotes the expectation and ijδ  denotes the Kronecker delta function. Q and R are bounded positive definite 

matrices (Q>0 and R>0). Initial state 0x  is normally distributed with 
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The system described by Eq. (1) and (2) is assumed to be stochastically controllable and observable. These 

conditions, together with the positive definiteness of Q and R ensure the asymptotic global stability of the Kalman filter. 
See Deyst et al (1968) for details. It is also assumed that the system is completely observable and controllable. 

For this system, the innovations sequence { }kυ  and the estimation error 1k|kx~ −  are defined, respectively, by 
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where 1k|kx̂ −  is the optimal linear estimate of kx . When the filter is optimum, in steady state, the innovations sequence 
is a stationary white noise sequence with covariance given, according to Kailath (1968), by 
 

RHHW T +Σ=  (10) 
 
where Σ  is the optimal steady state error covariance, satisfying 
 

( ) TT1TTT GQGAHRHHHAAA +Σ+ΣΣ−Σ=Σ
−

 (11) 
 

In steady state we also have 
 

k1k|kk|1k Kx̂Ax̂ υ+= −+  (12) 
 

1T WHAK −Σ=  (13) 
 

where K is the optimum steady state filter gain. 
Given data from a filter, Eq. (12), with suboptimal gain Ksub, which arises from incorrect Q and R covariance 

matrices, Carew et al (1973) proposed a recursive scheme to obtain the optimal filter gain K and the covariance W of 
the innovations associated to the optimal filter. The scheme is summarized in what follows. 

Given Qsub and Rsub, which are prior estimates of Q and R, by using Eq. (10), (11) and (13) we obtain the 
suboptimum steady state filter gain Ksub. Then, the suboptimal filter is given by 
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where 
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−

 is the suboptimal estimate of 1k|kx̂ − . The suboptimal filter steady state error covariance matrix is 

defined by 
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that, according Carew et al (1973), leads to 
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where W is given by Eq. (10). 

The correlation functions of the innovations, in steady state, are 
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Note that, if we have an optimal filter, then KKsub =  and 0Psub = . Hence, from Eq. (17), 0C j =  for 0j ≠  and C0 

is given by Eq. (10), as expected. 
In order to calculate K and W, the following iterative algorithm is proposed in Carew et al (1973), 
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In Eq. (19) B+ is the pseudo inverse of B defined by 
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where 
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The matrix D is given by 
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and m is the iteration index. 

The correlation functions Cj (j = 0, 1, 2, …, n) can be estimated experimentally, using the suboptimal innovations, 
by 
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where N is the number of observations. For finite N, the estimates given by Eq. (24) are biased but asymptotically they 
are unbiased and consistent. Carew et al (1973) show that estimates given by Eq. (19) converge to the optimum gain K, 
given by Eq. (13), if the correlation functions Cj are accurately known. 

Now, we consider errors on the evaluation of the correlation functions given by Eq. (24) modeled by 
 

)n...,,2,1,0(j,CCC jjj nom
=∆+=  (25) 

 



where )n...,,2,1,0(j,C
nomj =  is the nominal value of the correlation functions given by Eq. (17). From a practical point 

of view, a very important question is: What is the impact of the errors )n...,,2,1,0(j,C j =∆  on the identification of the 
optimum filter gain K? Section 3 deals with this issue. 

 
3. Impact of Correlation Errors on the Optimum Filter Gain Identification 

 
Suppose that )n...,,2,1,0(j,CCC jjj nom

=∆+=  in Eq. (18) and (19). Consider that all inverses indicated exist. 

Due to errors jC∆ , 
1msubmm PandK,W
+

 in Eq. (18)-(20) do not converge anymore to the desired steady state values 

W, K and Psub. Instead, they will converge to *
1m

*
m

*
m PandK,W + . That is, errors jC∆  will imply on errors in Eq. (18)-

(20), modeled as 
msubmm PandK,W ∆∆∆ , respectively. 

Therefore, Eq. (18)-(20) will assume the form 
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where * denotes that the variable contains errors due to jC∆ . 

By replacing Eq. (25) into Eq. (18), we get 
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and by using Eq. (28) results 
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that can be written in the form of Eq. (26) with 
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In a similar way, considering Eq. (25) into Eq. (19) leads to 
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Equation (33) can also be written in the form of Eq. (27) with 
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Now, considering Eq. (20) and Eq. (28), we can write 
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that leads to Eq. (28) with 
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Equations (31), (34) and (39), together, lead to the optimum filter gain K, since the correlations involved are given 

by Eq. (17). Equations (32), (35) and (40) will help us to analyze the identification error K∆  due to errors in Eq. (24) 
modeled by Eq. (25). 

As proved by Carew et al (1973), Wm and Km converges to W and K, respectively. Then, we can write, taking Eq. 
(26) and Eq. (35), 
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and, from Eq. (40), 
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where 
 

KKK sub −=  (43) 
 

In Eq. (41) - (43), W is given by Eq. (10) and K is given by Eq. (13). 
Therefore, given )n...,,2,1,0(j,C j =∆ , by using Eq. (32), (41) and (42), in a recursive manner, we can evaluate the 

impact of the correlation errors on the identification of the optimum steady state filter gain. 
 

4. Simulation Results 
 
To evaluate the impact that covariance errors have on the identification of K, we will use an evader dynamic 

system, presented by Hong (1991), described by Eq. (1)-(2) with 
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and only one sensor, in the central coordinate system, is considered. Note that the measurement model provides 
readings of the evader position on the x-y plane, corrupted by noise, and can be understood as a fictitious model of a 
radar. In this case, the radar, that generally provides range and azimuth measurements, provides directly the x-y values. 
In this system, one object moves on a two dimensional surface in a near elliptical course and the exact dynamics of the 
object is unknown. For more on radar measurement models, see Farina et al (1998) and Chen et al (2000). 

Given the optimal statistics Q and R, the optimum steady state gain matrix, for reference, is 
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The correlation functions considered ranged from 0 to 2. Their nominal values were evaluated analytically by 

means of Eq. (17). In Fig, 1 to 3, jC∆  range from –50% to 100% of the nominal value 
nomjC , indicated in the 

horizontal axis of each figure, while the other ji,Ci ≠∆  were kept null. 
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Figure 1. Gain identification errors due to error in C0. 
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Figure 2. Gain identification errors due to error in C1. 
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Figure 3. Gain identification errors due to error in C2. 
 
An analysis of Fig. 1 to 3 indicates that the identification errors can be considerable. Additionally, the impact on 

theses errors is less significant as the index j of the correlation function increases. This effect may be analyzed based in 
Eq. (37). In this equation, as the lag index j increases, the j-lag error in the correlation matrix associated, j>1, appears  
n-j+1 times, providing less influence on the identification errors. Besides, as the lag index j increases, the nominal value 
of the correlation matrices becomes smaller. Therefore, the errors considered in the simulation, given in percentage of 
Cj, are also smaller. 

 
 



5. Conclusions 
 

The impact that errors on the evaluation of the correlation functions have on the identification of the steady state 
Kalman filter gain was investigated in this paper. The main contribution is the development of equations that quantifies 
the identification errors based on the correlation errors. Based on the presented results, we can conclude that in real time 
applications and even in simulations with pseudo random signal generators, such as those in Matlab, it will be very 
difficult to estimate accurately the optimum steady state filter gain. This is mainly due to experimental errors on the 
estimates of )n...,,2,1,0(j,C j =  that will differ from the theoretical ones given by Eq. (17). Hence, in order to obtain 
better results on the identification of the optimum filter gain, the correlations matrices must be evaluated, based on 
practical data, that is, the innovations of a suboptimal filter, as accurately as possible. Although the errors in the gain 
identification may have less significant impact in the state estimation errors, this is only so for the single sensor 
environment. For multisensor applications, errors in the gain identification can degrade significantly the state estimates, 
as will be reported elsewhere. 
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