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Abstract. In order to analyze the effect of the use of Genetic Algorithm in redundant system optimization problem, four availability 
optimization problems were considered, where the optimization variables were the number of redundancies of each component and 
the availability of the components. The difference between the problems is how the components availability is increased. In the first 
problem, the increase of the availability is reached with decrease of the repair time, which is represented by the MTTR (Mean Time 
to Repair). In the second case, the objective is the increase of the MTTF (Mean Time to Fail). The other problems object to get 
better repair time, as the first one. The difference between them is the way to reach this target. In the problem number three, a better 
MTTR is obtained with the increase of maintenance team. The other option (problem four) is optimize the maintenance resources, 
that is more general, because include maintenance team and other maintenance tools. 
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1. Introduction 

 
The importance of designing reliable systems, which normally present high availability, is increasing, due to the 

engineering requirements of products with better quality and a higher safety level. There are two ways of increasing the 
availability of an engineering system: increase the availability of each component or use redundant components. In 
order to increase the availability of a component, it is possible to work on the improvement of reliability and 
maintainability. If the failure rate, which is related to the reliability, decreases, the system will be available to work for 
more time. And with an efficient maintenance program, the system can be repaired quickly. Reliability is the probability 
that a system or component operates successfully at an interval of time t. This success must be understood as the 
performance of the design function. The reliability can be easily obtained by failure time analysis of components or 
systems and it is complementary to the accumulated failure distribution. A statistical distribution must be used to 
represent the curves of reliability and accumulated failure distribution. The exponential distribution is characterized for 
a constant failure rate in the time domain, which is convenient for components or systems with long useful life, 
represented by electronic components. The Weibull distribution is ideal for fatigue failure and crack propagation, which 
are characteristics of mechanical systems.  Other statistical distributions, such as normal, lognormal, Rayleigh and 
Gamma can be applied in failure analysis or maintenance analysis. Maintenance analysis has repair time as the control 
variable. It results in another probabilistic parameter, the maintainability, which is the capacity to renew a system or 
component in a determined period of time, to continue executing its design functions. The use of redundant components 
in an engineering system results in availability increase. However, the design and maintenance costs, along with volume 
and weight, also increase. So optimization methods are necessary to determine how many redundancies are necessary in 
each component or subsystem, maximizing availability while taking into account the constraint limits (cost, weight, 
volume). In the same way, the number of maintenance teams in each subsystem can be obtained. Traditional methods, 
such as the Lagrange Multiplier (Ramakumar, 1993), are inefficient with this kind of problem, because it is necessary to 
apply complex mathematical fundamentals, that makes the computational implementation difficult and without 
flexibility. Some search methods can reach only local optima. The Genetic Algorithm (Holland, 1975) is a search 
method that is analogous to biological evolution and reproduction.  Castro and Cavalca (2002) applied some 
optimization methods to redundancy allocation problems. The Genetic Algorithm and Lagrange Multipliers were 
compared. Previous works show that Genetic Algorithm is indicated for problems, which apply complex mathematics 
expression for modeling. This kind of model hinders the use of differential calculus, which is basic for the traditional 
optimization method, such as the Lagrange Multiplier. Kumar et al. (1995), Painton and Campbell (1995), Rubinstein et 
al. (1997), Levitin (2001) Hsieh et al. (1998)  have chosen the Genetic Algorithm to solve redundancy allocation 
problems and other reliability optimization problems. The aim of this paper is present an availability optimization 
problem, which is more complex than reliability problems, because availability considers maintenance and failure time. 
The optimization method is based on Genetic Algorithm, which is indicated for problems with this complexity. 

 
2. Availability Optimization Problem 

 
There are two possibilities of increasing the system availability. Firstly, it is possible to get high levels for the 

availability of each component, which can be obtained by the increase of failure time and/or the decrease of repair time. 
So, it is quite important to make the availability and dependability analysis of a product inside the decision process on 
economic and technical feasibility. Therefore, dependability is a probabilistic concept that relates failure time and repair 
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time. Another way to increase the system availability is applying the concept of redundant components or subsystems. 
However, both ways of obtaining high availability levels bring high costs to the system. Redundant components must 
increase volume and weight as well. Therefore, optimization methods are necessary to obtain allowable costs, volume 
and weight at the same time as high availability levels. The availability optimization problem developed in this work 
uses the two possibilities to increase system availability. Because of that, some concepts of availability and 
dependability are presented in the following sections. Statistical distributions are needed to evaluate availability and 
dependability quantities. Thus, the exponential and Weibull distributions will also be explained. The choice of both 
distributions is due to the main focus of application of the methodology, which involves basically electronic and 
mechanical systems. 

 
2.1 Availability Analysis 

 
The steady state definition of Availability A, or the probability of an entity’s successful operation in a determined 

period of time, can be calculated by the ratio between life time and total time between failures of the equipment. An 
entity is used to denote any component, subsystem, system or equipment that can be individually considered and tested 
separately. 
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Life time is represented by MTTF (mean time to fail), which can be obtained from failure analysis. MTTR (mean 

time to repair) can be evaluated from maintenance analysis and represents the repair time as follows: 
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Initially, to make the availability analysis, an exponential distribution is assumed to be representative for the 

reliability and maintainability statistical models. In this case, the MTTF is inversely proportional to the failure rate, 
which is constant (Equation 3). Analogously, the MTTR is the inverse of the repair rate (Equation 4). 
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Availability can be expressed by the equation bellow: 
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The time depended definition of Availability is given by Equation 6: 
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If the time t tends to infinite: 
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2.2 Dependability Analysis 

 
Dependability can be defined as the science of failures, which encompasses the knowledge of these failures, their 

assessment, their prediction, their measurement and their control. In the strict sense of the word, dependability is the 
ability of an entity to perform one or several required functions under given conditions. 

The dependability concept was also defined by Wohl (1966) as the probability that an entity does not fail, or does 
fail and can be repaired in an acceptable period of time. This definition is an important design parameter, because it 



 
provides a single measurement of the performance conditions by means of the combination of the failure and repair 
rates associated to reliability and maintainability respectively. 

An important characteristic of dependability is to allow the analysis of costs, reliability and maintainability 
simultaneously. Failure rate and repair rate are assumed as constant values for the dependability analysis, characterizing 
exponential distributions in both cases. The dependability ratio is the ratio between the repair rate µ, and failure rate λ.  
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The higher the value of dependability ratio, the greater the necessity of maintenance in the system. So allied to the 

cost values, it is possible to determine if the equipment is economically and technically viable or not. The relation 
between the availability and the dependability ratio can be obtained from the combination of Equation 5 and Equation 8. 
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Figure 1. Relation between availability and dependability 

 
Figure 1 shows a significant increase in the dependability ratio if the availability value is above 0.9 and a 

corresponding decrease if the availability value is less than 0.1 (Ertas, 1993). These effects mean great sensitivity of the 
dependability ratio in these regions. Analyzing the region where the availability is higher than 0.9, an extreme increase 
of maintenance is necessary for a small increase of the availability upgrade, which generates high costs. Therefore the 
region where the availability varies from 0.1 to 0.9 is indicated as economically and technically viable to work. 

 
 

3. Problems Formulation 
 
A redundant system can be represented by a series of parallel systems, as observed in Figure 2. 

 
Figure 2.  Redundant System 

 
The availability of this system can be obtained by the Equation 10, where Ai is the availability of the components of 

the subsystem i and yi is the number of redundant independent components in subsystem i. 
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Considering an exponential distribution, the availability of each component Ai can be represented by Equation 9. 

Substituting for Ai in Equation 10, the availability function of the dependability ratio of each subsystem is obtained: 
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The cost of the system can be obtained by the total sum of the product of each component cost by the number of 

components in that stage, as shown in Equation 12: 
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Similarly, the system weight and volume can be calculated:  
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In order to get higher levels of system availability, the number of redundant system yi and the dependability ratio of 

a stage di have to increase. Four optimization problems were formulated to represent the increase of the dependability 
ratio. 

 
3.1 Decrease of MTTR 

 
The dependability ratio, given by Equation 6, can reach higher levels by the increase of the component MTTF or the 

decrease of its MTTR.  
In order to get better MTTR levels, some maintenance investments are required. The investment cost can be 

represented by the following expression, where cdi is the cost of dependability ratio increase. 
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So the total cost is results from the sum of Equation 12 and Equation 14. 
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In that case, the optimization variable is the number of redundancies and the MTTR of each stage. The objective 

function is the availability, which is given by Equation 9. The constraints functions are: 
 
1. Total Cost (Equation 15); 
2. System Weight (Equation 13(a)); 
3. System Volume (Equation 13(b)). 

 
3.2 Increase of MTTF 

 
This problem is similar to the problem of section 3.1. The difference between then is the optimization variable. 

In the first problem the variable is the MTTR of each stage, and in the current problem it is the MTTF of each stage 
 

3.3 Maintenance Team 
 
Another way to decrease the MTTR and, consequently, get better dependability ratio di, is to consider the effect of 

the maintenance teams’ action on the process. The influence of maintenance teams in cost and availability are 
formulated as the following equations. 



 
The maintenance cost of the system can be obtained by Equation 16: 
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Where eqi is the number of maintenance teams, yi is the number of components in each stage, ceqi is the maintenance 

team cost, cmi is maintenance cost of the subsystem i and qi is the failure probability of a component in subsystem i, 
which is given by Equation 17 for a exponential distribution.  
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A subsystem fails only if all its components fail. Considering that only one team of maintenance works on a 

component and that the MTTR1i is the mean time to repair to the components of the subsystem i, the MTTR of all 
subsystem i can be obtained by Equation 18: 
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Where f is given by the expressions in Equation 19: 
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The dependability ratio of the subsystem is given by Equation 20: 
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Where d1i is the dependability ratio of one component in subsystem i. 
Substituting di on Equation 9, the availability can be written as a function of the number of components and teams 

of maintenance in each subsystem. 
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The objective is reaching the ideal number of components and teams of maintenance for the maximum value of the 

availability, inside the restriction area given by the following constrains:  
 

1. Design Cost (Equation 12); 
2. System Weight (Equation 13(a)); 
3. System Volume (Equation 13(b)); 
4. Maintenance Cost (Equation 16); 
5. The number of components yi must be higher than or equal to the number of teams of maintenance eqi. 

 
3.4 Maintenance Resources 

 
A general way to describe the influence of all kind of maintenance resources on availability optimization problem is 

formulated at this section. Maintenance resources are represented by maintenance teams, equipments, financial 
resources and other kind of engineering concepts that can be applied to get better MTTR value. 

In order to describe the influence of maintenance resources on availability value, it is defined the impact variable I, 
that is how much the MTTR is decreased if 100% of maintenance resources is applied on any component. The 
dependability ratio di is given by: 

 

( )[ ] iii drecId 111 ⋅+⋅−=          (22) 



 
 
Where reci is the amount of maintenance resources that is applied on stage i, and d1i is the dependability ratio in the 

case that no maintenance resources is applied. 
The maintenance cost is given by Equation 23. And the system availability, which is the objective function, can be 

getting by the combination of Equation 11 and Equation 22.  
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The constrained functions are: 
 

1. Design Cost (Equation 12); 
2. System Weight (Equation 13(a)); 
3. System Volume (Equation 13(b)); 
4. Maintenance Cost (Equation 23); 

 
4. Genetic Algorithm 

 
The search space, determined by the restrictive conditions, and the objective function, are the only parameters 

necessary for some search algorithms such as the Evolution Strategy (Michalevicz, 1996) and Genetic Algorithm 
(Mitchell, 1996). A genetic algorithm is a search strategy that employs random choice to guide a highly exploitative 
search, striking a balance between exploration of the feasible domain and exploitation of “good” solutions (Holland, 
1992). This strategy is analogous to biological evolution. Different to the classic optimization algorithms, the Genetic 
Algorithm (GA) does not work with only one point in the search space, but with a group of points simultaneously. The 
number of points is previously determined by a parameter known as population size. The GA does not need to use 
differential calculus. It can be considered a robust method, because it is not influenced by local maximum or minimum, 
discontinuity or noise in the objective function. The GA applied to the reliability optimization had a considerable 
increase in the 80’s and 90’s, which is shown by the evaluation of Kuo and Prasad (IEEE Transactions on Reliability, 
2000). Another example of this application is the work of Hisieh, Chen, Bricker (Microelectronics Reliability, 1998). In 
this work, the redundant number and the reliability of the components of each subsystem (stage) are optimized for three 
different systems. 

 
4.1 Genetic Algorithm operators 

 
The GA operators are the instruments used by the algorithm to reach the optimum point of the function (Goldberg, 

1989). Three operators were developed in the program: mutation, crossover and selection. The mutation is the operator 
of the GA that changes some characters of the selected chromosomes, forming a new individual. Crossover is an 
operator that mixes the “genotype” of two selected chromosomes. Figure 3 illustrates mutation and crossover process. 

 
Figure 3. Mutation and Crossover examples 

 
Inversion is an operator that inverts the order of the “genes” of an individual, forming a new individual with a 

different genetic code.  The other operator is selection, which selects the fitter individuals (Objective Function closer to 
the optimum point), in order to be the genitors of the next generation. 

 
4.2 Genetic Algorithm codification 

 
Binary numbers traditionally represents a genetic algorithm individual. It makes working with integer and real 

numbers together in the same optimization process possible. Therefore, decoding transforms this variable in binary 
numbers. However, it is possible to use different kind of codes, such as genes that are represented by integer and real 
numbers. 

The decoding of a binary sequence to decimal number (integer or real) is represented by Equation 24: 
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Where cj and dj are the maximum and minimum possible values of the decimal variable xj and bi is the digit i of a 

binary number with k digits. Thus, the number of digits of an individual (chromosome) is the product of the number of 
variables (redundancy and maintenance team) and the number of bits (eight).  

 
4.3 Genetic Algorithm parameters 

 
There are four GA parameters that influence the process time and the objective function convergence. As the GA is 

characterized to be a search algorithm, the increase of the operation time brings about better objective function 
convergence. The GA parameters are: 

 
• Total number of generations: this parameter is characterized to be the stop condition of the genetic 

algorithm. The increase of the total number of generations results in a linear increase of the process time as 
shown on Figure 4;  

• Population size: it is the number of individuals, who are represented by their chromosomes in each 
generation. The increase of this parameter increases the probability of objective function convergence. 
However, the process time increases very significantly. This influence is represented by Figure 5 

 

  
Figure 4. Influence of total number of generations on 
process time 

Figure 5. Population influence on process time 

• Mutation probability: it is the probability of mutation occurrence. Normally, the increase of mutation 
probability leads to better values of availability. Over 90% mutation probability, this influence is 
negligible and no improvement is noticed in the availability value. Therefore, in this case-study, a 
mutation probability of 90% was considered. 

• Crossover Probability: it is the probability of the crossover occurrence. The increase of crossover 
probability leads to better values of availability up to the value of 10%. If no crossover is applied, the 
process does not reach the best optimum result. For a crossover probability over 10% no significant 
improvement is noticed in the availability value and its value tends to decrease. Therefore, in this case-
study, a crossover probability of 10% was considered. 

• Inversion Probability: it is the probability of the inversion occurrence. 
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Figure 6. Mutation influence on the Availability Value Figure 7. Crossover influence on the Availability Value 

 
4.4 Genetic Algorithm Steps 

 
1. Form an initial generation; 



 
2. Make generation = 1; 
3. Select 50% of the best individuals (closest to the optimum point); 
4. Form new individuals using mutation and crossover, until the population size is reached; 
5. Make generation = generation + 1; 
6. If generation is equal to the total number of generations then stop, otherwise go to step 3. 

 
5. Numerical Simulation 

 
In order to analyze the results of the proposed problems, a system with five subsystems is chosen. The MTTF, 

MTTR, weight and volume of each component are in Table 1. All cost variables are shown Table 2:  
 

Table 1. System Data. 
Subsystem MTTF MTTR WEIGHT VOLUME 

1 500 50 50 55 
2 550 35 45 50 
3 600 40 80 70 
4 750 30 35 35 
5 500 30 70 65 

 
Table 2. System data (Cost). 

Subsystem Design 
Cost 

Dependability 
Ratio increase Cost 
(Problems 1 and 2)

Maintenance 
Cost 

(Problems 3 and 
4) 

Team 
Maintenance 

Cost 
(Problem 3)  

Maintenance 
Resource Cost 

 (Problem 4) 

1 50 0,60 60 30 5 
2 55 0,60 40 30 5 
3 55 0,50 45 25 3 
4 40 0,50 30 25 3 
5 60 0,60 50 30 5 

The constraints considered to be the problem here were: maximum design and maintenance costs, weight of the 
system, volume of the system, and number of available maintenance teams for the system. The number of maintenance 
teams in each subsystem cannot be larger than the number of redundancies. Table 3 shows the constraint values for the 
problem. 

 
Table 3. System Constraints. 

Maximum Design 
cost 

Maximum 
Weight 

Maximum 
Volume  

Maximum 
Maintenance Cost 

Available 
maintenance team 

1000 1000 1000 500 20 
 

The Genetic algorithm parameters for this simulation are: 
 

Table 4. Genetic Algorithm Parameters 
 Total Number of 

generations Population size Probability of 
mutation 

Probability of 
crossover 

Probability of 
inversion 

Problem 1 5000 50 90% 10% 70% 
Problem 2 5000 50 90% 10% 70% 
Problem 3 10000 50 90% 10% 70% 
Problem 4 5000 50 90% 10% 70% 
 
In order to get the maintenance cost in problems 3 and 4, the value of the accumulative failure distribution in the 

time domain is necessary. So time t is considered equal to 100 time unit (the same unit as MTTF and MTTR). The 
optimum result of problem one can be observed in Table 5 and Table 6 show the best result for problem 2. 

 
Table 5 – Optimum Solution of problem 1 Table 6. Optimum Solution of problem 2 

Subsystem Redundancies MTTR  Subsystem Redundancies MTTF 
1 2 4,18  1 3 2827 
2 3 4,05  2 2 5000 
3 2 3,59  3 3 1227 
4 2 4,25  4 4 699 
5 3 7,67  5 4 1227 

 
 
 
 
 



 
Table 7. Optimum Solution of problem 3. Table 8. Optimum Solution of problem 4. 

Subsystem Redundancies Maintenance Team  Subsystem Redundancies Maintenance  
Resources 

1 3 3  1 3 22% 
2 4 2  2 3 15% 
3 4 3  3 3 38% 
4 4 2  4 6 1% 
5 3 3  5 3 15% 

 
The optimum solution for the simulation of problem 3 is shown in Table 7. The best result of problem 4 is shown in 

Table 8. It is noted that is used only 91% of maintenance resources. The other 9% is not used because it causes a break 
in restrictions conditions. So, is not viable to use all maintenance resources. 

The system characteristics for the optimum solution are:  
 

Table 9. Final Systems 
Problem  1 2 3 4 

Optimum availability for the system 99,99% 99,99% 99,87% 99,98% 
Design Cost $998,8 $825 $930 $900 

System Weight 675 900 1000 945 
System Volume 625 875 980 930 

Maintenance Cost - - $494 $500 
Number of maintenance Teams - - 13 - 

All system characteristics are near to the restriction conditions. Others constraints were considered to simulate the 
problem 3, as shown in Table 10: 

 
Table 10. System Constraints 

Maximum Design 
cost 

Maximum 
Weight 

Maximum 
Volume  

Maximum 
Maintenance Cost 

Available maintenance 
team 

1500 1500 1500 1000 20 
 

The optimization results for this second case study are listed in Table 11 and the new system characteristics are 
shown in Table 12: 

   
Table 11. Optimum solution for new constraints Table 12. Final System for new constraints 

Subsystem Redundancies Maintenance Team  Optimum availability for the system 100 % 
1 7 4  Design Cost $1360 
2 4 4  System Weight 1500 
3 6 3  System Volume 1470 
4 4 4  Maintenance Cost $769.5 
5 5 5  Number of maintenance Teams 20 

 
In this second case, where the search space is larger, the optimum result (availability equal to 100%) can be 

obtained through many combinations of the parameter response. Therefore, a multiobjective optimization would be 
advisable, and besides maximizing the availability, it would minimize the costs, in order to improve the convergence of 
the algorithm.  

 
6. Real Example 

 
In order to show the viability of the proposed method, a real example of a production line of ZF do Brazil S.A. was 

adopted for problem 3. The data for this analysis is shown in Table 13. The system constraints can be observed in Table 
14. 

 
Table 13. Real Example data 

Subsystem MTTF MTTR Area Design Cost Maintenance Cost Team Maintenance 
Cost 

1 7670 42 15 500000 200 22,28 
2 7670 42 15 500000 200 22,28 
3 5200 120 20 700000 300 22,28 
4 5700 160 15 200000 100 22,28 

 
Table 14. System Constraints 

Maximum Design 
cost Maximum Area Maximum 

Maintenance Cost 
Available maintenance 

team 
5000000 1000 3000 10 



 
 
Area can be calculated similarly to the volume. Volume and weight are not considered in this case. The total 

number of generation is 5000 generations. The other Genetic Algorithm parameters are the same of Table 4. The 
optimization results for this case and the system characteristics are shown in Tables 15 and 16 respectively. 

 
Table 15. Optimum solution for real Example Table 16. Final System for real Example 

Subsystem Redundancies Maintenance Team  Optimum availability for the system 98,79 % 
1 1 1  Design Cost $2800000 
2 1 1  System Area 100 
3 2 2  Maintenance Cost $169,6 
4 2 2  Number of maintenance Teams 6 

 
7. Conclusions  

 
The Genetic Algorithm solves the proposed problems, but if the GA parameters (total number of generation, 

population size and probability of mutation, crossover and inversion) are not properly adjusted, the result can be 
unsatisfactory. Thus, a wide knowledge of the analyzed system and of the genetic algorithm optimization method is 
necessary. The more units the system has, the larger the total number of generations and population size. In this case, 
the total number of generations increases, in order to reach the best result. For problems with large search space, the 
possibility of reaching availability value close to 100% with many combinations increases. In that case, the search space 
needs to be diminished or a multi-objective operator is necessary. The real application proved that the proposed method 
is viable for practical using in engineering. 
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