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Abstract. In the present work we consider the laminar natural convection inside a semi-circular shaped enclosure filled with air, 
which is numerically analyzed in two cases: (a) heated from the top and cooled  from the bottom; (b) cooled from the top and heated 
from the bottom. Two dimensional equations for mass, momentum and energy conservation, with the Boussinesq aproximation are 
numerically solved using a finite volume method. The discretized equations are obtained through the Patankar’s Power-Law scheme 
and a fully implicit formulation. The adopted numerical procedure for pressure calculation is based on the SIMPLE algorithm. The 

governing parameters used are: 83 1010 ≤≤ Gr ; Pr=0.72. The isotherms, streamlines and profiles of velocity along the middle of 
the vertical and horizontal line of the cavity and the normalized average Nusselt number are presented in terms of Grashof number. 
When Gr ≈ 103, in both cases the process is similar to pure conduction; when the Grashof number increases, the convection 
dominates the process of heat transfer. In the first case, the Nusselt number at the base of the cavity increases  when the Grashof 
number increases up to about Gr=1.5x107, and decreases for Grashof numbers greater than this value. In the second case, the 
Nusselt number increases for values of Gr greater than 103. 
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1. Introduction  

 
  Natural convection in enclosures plays an important role in many engineering applications, such as building heating 

systems, electronic cooling systems, metallurgical processes and material processing. Due to its importance, it has been 
the study of many researchers.  In addition, enclosure geometry has been widely studied in heat transfer because of its 
fundamental importance and its many applications. Most of the previous studies were carried out on rectangular and 
triangular geometry, covering wide ranges of Grashof number and aspect ratios which can be found in the literature. 
Manglik et al (1988) analyzed the laminar flow heat transfer in a semi-circular tube with uniform wall temperature. The 
theoretical study of the natural convection in an air-filled enclosure was numerically studied for U-C. Shin et al (1994). 
The enclosure was composed of the partial horizontal cylinder limited by a plate, and calculation was carried out for a 
wide range of Grashof numbers and the inclination of the enclosure, using bicylindrical coordinates. Van Dyne et al 
(1994) studied the natural convection heat  and mass transfer in a semi-cylindrical enclosure filled with a heat 
generating porous media. Liaqat et al (2001) presented a  numerical comparison of the conjugate and non-conjugate 
natural convection for internally heated semi-cylindrical cavity.  Chakroun et al (2002)  studied the effect of roughness 
on heat transfer in semi-cylindrical cavities. The present  work focusses the study of natural convection in a semi-
cylindrical cavity  filled with air, which is numerically analyzed in two cases: (a) heated from the top and cooled  from 
the bottom with a uniform and constant temperature; (b) cooled from the top and heated from the bottom with a uniform 
and constant temperature. Two dimensional equations for mass, momentum and energy conservation, with the 
Boussinesq aproximation are numerically solved using a finite volume method. The discretized equations are obtained 
through the Patankar’s Power-Law scheme and a fully implicit formulation. The adopted numerical procedure for 

pressure calculation is based on the SIMPLE algorithm. The governing parameters used are: 83 1010 ≤≤ Gr ; Pr=0.72. 
In order to define the semi-cilyndrical solution problem domain, the blocking-off method also suggested by Patankar 
(1980) is used. 
 
2. Mathematical Modeling 
 

The considered geometry is shown in Fig. (1). The gravity vector is normal to the base of the cavity.  R is the radius 
of  the cavity. Two cases are studied: Case I - heated from the top and cooled  from the bottom; Case II - cooled from 
the top and heated from the bottom.  In order to formulate the fluid convection in the cavity, the following assumptions 
were considered: the flow is two-dimensional and laminar; the temperature gradients are moderate for which the 
Boussinesq approximation is valid; viscous dissipation and the work done by compression  forces are negligible. 
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Figure 1: Semi-cylindrical cavity and the coordinate system. 
 

The basic equations for the unsteady-state natural convection can be written in the dimensionless form  as: 
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where u and v are dimensionless velocities in x and y directions; g is the acceleration due to gravity; Pr is the Prandlt 
number; Gr is the Grashof  number; θ is the dimensionless temperature and p is the dimensionless pressure. 

 
For the construction of dimensionless quantities the following non-dimensionless variables are defined: 
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where  R is the radius of the cavity; α is the thermal diffusivity of the fluid; β  is the thermal expansion coefficient; ν  

is the cinematic viscosity, ρ is the density; Tc is the dimensional temperature of the cold wall; Th is the dimensional 

temperature of the hot wall and T is the dimensional temperature inside the cavity . The upper indices  ’ indicates 
dimensional variables.  

 
 The boundary conditions for the two cases are: 
Case I: 

for 1x0 ≤≤ ,  ( ) 12y21x =+− ,  0vu == , 1=θ                                                                                                   

                                                                                                                                                                              (6) 
for 10 ≤≤ x ,      0=y ,   0vu == , 0=θ  



Case II: 

for 10 ≤≤ x ,  ( ) 1221 =+− yx ,  0vu == , 0=θ  

                                                                                                                                                                                (7) 
for 10 ≤≤ x ,      0=y ,   0vu == , 1=θ       

 
The boundary conditions for the velocity vector components in impermeable solid surfaces are the non-slip and 

non-flow conditions.  As it was not possible to determine the pressure, but only pressure differences from Eq. (2) and 
(3), for the sake of definiteness, it will be assumed that the pressure is zero (or a reference value) at the point with the 
coordinates  x = y = 0. 
 

The local Nusselt number at  the base of the cavity is calculated using 
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and the average Nusselt number can be obtained by integrating the local Nusselt number along the wall 
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The normalized Nusselt number is defined as 
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where 
0Gr

Nu = is for pure conduction in the same conditions. 

 
3. Numerical Procedure 
 

In order to perform the discretization of the governing equations, the power law scheme introduced by Patankar 
(1980) is adopted. 

As in all control volume methods, the discretized equations are obtained by the integration of the equation over 
control volumes surrounding each grid point.  

The solution of the momentum equations requires a procedure to calculate the pressure fields. Since there is no 
specific equation for the pressure, the SIMPLE  algorithm developed by Patankar, using the mass conservation equation 
to obtain an equation in terms of the pressure in the grid points, is considered. To solve the set of algebraic equations an 
interactive line-by-line process is used. This process is a convenient combination of a direct method TDMA  for one 
dimensional situation and the Gauss Siedel method. The construction of the discretized equations was done considering 
a fully implicit method.  

As shown by Patankar, to avoid non realistic solutions, independent grids for the variables u, v and p are required. 
The use of the staggered grids was adopted here. This process facilitates the application of the boundary conditions. 
Other advantage is that the u and v velocity components coincide with the faces of control volume for pressure and 
temperature. On the other hand, it imposes the necessity of using interpolation schemes for the u and v grids. 
It is very difficult to guarantee the convergence of a non linear system of equation. To achieve the convergence, 

under-relaxation factors are applied in the solution procedure to avoid large corrections in  one step of iteration, which 
may cause the divergence of the process. 

The convergence must be verified in each iteration, following a predetermined criterion. In this work we selected 
the criterion which considers the average error for each control volume, and the convergence parameter could be 
different for each variable depending on the order of magnitude of the variable in study. Here we set the convergence 
parameters as 10-5 to all  variables. 

In order to obtain grid independent results, grids with 1624, 2964, 3784 and 4704 uniform volumes were tested. 
The differences between the 3784 and 4704 internal volume grids were minimal for all the values of Gr used. 4704 
volume grids were used for all situations. In order to define the semi-cilyndrical solution problem domain, the blocking-
off method suggested by Patankar was used. It consists in considering inactive the control volumes of a regular grid, so 
that the active volumes make the desired domain. This is got by considering the velocities components equal zero in the 
inactive region, and fixing a constant known value for the temperature in the inactive region. For example, the velocities 
in the inactive region can be considered equal zero by the use of a great value of the viscosity in this region  and the 
value zero for the velocities in the nominal border.    



4. Results and Discussion 
 
4.1. Case I - Cavity heated from the top and cooled  from the bottom 
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Figure 2. Isotherms (left) and streamlines (right) for the steady state flow Gr = 1.0x103,  Gr = 1.0x105,  Gr = 1.0x106,   
Gr = 1.0x107,   Gr = 5.0x107. 
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Figure 3. Horizontal velocity component profile along the middle vertical line of the cavity. 

Figure 4. Vertical velocity component profile along the middle horizontal line of the cavity. 

 
Figure 5. Average normalized Nusselt number in the base as a function of the Grashof number. 
 



Figure (2) shows the streamlines and isotherms considering different Grashof numbers for the case in which the 
cavity is heated from the top and cooled from the bottom. When Gr ≈ 103, the isotherms almost take a position 
indicating that conduction is the main process occurring. With the increase in the Grashof number, the convection 
process is much more intense and there is a greater circulation of the fluid shown through the streamlines; the isotherms 
are influenced by the convection process and show a stratified profile.  

Figure (3) shows the horizontal velocity component profile along the middle vertical line of the cavity for some 
values of  Grashof  number. We can notice that for lower  Grashof number, the horizontal velocity tends to zero; and 
when the Grashof number increases, there is also an increase in the velocity, indicating a  more intense fluid movement 
due to convection currents.  

Figure (4) shows the vertical velocity component profile along the middle horizontal line of the cavity for some 
values of  Grashof  number. The same effect is observed, when the Grashof number increases, there is also an increase 
in the velocity. 

 Figure (5) presents the average normalized Nusselt number at the cavity bottom as a function  of the Grashof 
number. As it can be verified, the Nusselt number increases when the Grashof number increases up to about 
Gr=1.5x107, and presents a slight decrease for Grashof numbers  greater than this value.  
 
4.2. Case II -Cavity cooled from the top and heated from the bottom. 
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Figure 6. Isotherms (left) and streamlines (right) for the steady state flow for Gr = 1.0x103, Gr = 1.0x105, Gr = 1.0x107, 
Gr = 1.0x108. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Horizontal velocity component profile along the middle vertical line of the cavity. 
 

 
Figure 8.  Vertical velocity component profile along the middle horizontal line of the cavity. 

 
Figure 9. Average normalized Nusselt number in the base as a function of the Grashof number. 
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Figure (6)  shows the streamlines and isotherms considering different Grashof numbers for the case in which the 
cavity is cooled from the top and heated from the bottom. We can notice that the isotherms and the streamlines are 
symmetric for all Grashof number values; these results can be compared qualitatively with the results of  Shin et al 
(1994). 

Figure (7) shows the horizontal velocity component profile along the middle vertical line of the cavity for some 
values of  Grashof  number. We can notice that for Grashof number up to 1.0 x105, the horizontal velocity is almost 
equal zero; and when the Grashof number increases, there is an increase in velocity,  indicating a  more intense fluid 
movement due to convection currents mainly in the upper part of the cavity.  

Figure (8) shows the vertical velocity component profile along the middle horizontal line of the cavity for some 
values of  Grashof  number. The same effect is observed; when the Grashof number increases, there is also an increase 
in velocity, and the velocity profile is symmetric.  

Figure (9) presents the average normalized Nusselt number at the cavity bottom as a function  of the Grashof 
number. One can observe that when the Grashof number increases,  the convection process dominates the heat transfer, 
producing greater Nusselt numbers. These results can also be compared qualitatively with the results of  Shin et al 
(1994). 
 
5. Conclusion 
 

This work presented a study about laminar natural convection inside a cavity of semi-circular shape filled with air. 

The governing parameters used were: 83 1010 ≤≤ Gr and Pr=0.72. Two cases were analyzed. The first case considered 
the cavity heated from the top and cooled  from the bottom, with a uniform and constant temperature.  It was observed 
that for  Gr ≈ 103, the process is similar to pure conduction; when the Grashof number increases, the convection 
dominates the process of heat transfer. Based on the presented results we can note that the Nusselt number increases 
when the Grashof number increases up to about Gr=1.5x107, and presents a slight decrease for Grashof numbers  
greater than this value. The second case studied was the cavity cooled from the top and heated from the bottom with a 
uniform and constant temperature. In this case it was also observed the same effect in relation to the increase in the 
Grashof number: when the Grashof number increases, the convection dominates the process of heat transfer. It was 
noted that the streamlines and isotherms are symmetric. The results showed that  the increase in the Grashof number 
also increases the Nusselt number, indicating that the convection process dominates the heat transfer. Finally, the 
blocking-off method by Patankar (1980) seems to produce consistent results. 
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