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Abstract.  In this work, algorithms have been implemented to solve large sparse linear systems like those resulting from the solution
of convective-diffusive problems by numerical methods such as finite difference, finite volume and finite element methods, exploring
and preserving the initial sparsity of global matrix. Only the non-zero coefficients of the systems are stored in vector mode. In this
first phase of this work, the methods implemented are those of iterative stationary type. A library of computational subroutines has
been developed for the purpose of this work. Some numerical tests are implemented and results are obtained to verify the
performance of the methods and their computational implementation. No comparison with other public library of solution
subroutines has been done yet.
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1. Introduction

Many practical problems in engineering and related fields are governed by partial differential equations of second
order. Among these problems are the convective-diffusive problems, generally, solved by numerical methods, such as:
finite volume, finite element or finite difference methods. The resultant algebraic systems of equations from application
of these numerical methods forms large and sparse matrices. It taking account of the sparsity of the matrices may save
storage requirements and reduce computing time for solution of the systems. In this way, iterative methods are
advantageous due to their simplicity and power. The simplest iterative method has the form )(1 bAxxx lll −−=+ τ ,

..., ,1 ,0=l  where 0x is the initial guess and τ is a parameter, (Axelsson, 1996). Most iterative methods require only
matrix-vector multiplication, vectors dot product and vectors addition. Furthermore, the sparsity of the matrix A can be
fully exploited, and computer storage is required only for the nonzero entries of A and the vector x, plus one to three
more vectors to identify the position and the number of nonzero coefficient. Under certain conditions, the sequence

}{ lx  converges to the solution of bAx = . Excellent references on iterative methods are (Golub and van Loan, 1996)
and Hackabush (1994).

The iterative methods can be classified as of first-order or second-order, stationary or non-stationary. Some known
iterative methods are the Jacobi, Gauss-Seidel, the SOR, Chebyshev, Conjugate Gradient, Lanczos-Type and
Generalized Conjugate Gradient. In item 2 is given more insight about some characteristics of iterative methods.

The sparse matrix computation has been subject of study by many authors, for example, see the work of
(Kotlyar, 1999). Many computational packages and libraries have been developed for this purpose. Duff (1999)
presented a list of software for the parallel solution of large sparse linear systems. Saad & van der Vorst (1999)
presented a list of the main research developments in the area of iterative methods for solving linear systems during the
20th century.

The main purpose in this work is to implement some iterative methods and procedures for solutions of large sparse
systems originated from the numerical solutions of convective-diffusive problems, in such way, that only nonzero
entries of the matrix A will be stored, reducing data storage and computing time. Some test problems are solved in order
to show the performance of the methods.

2. Iterative Solution Methods

In this section we present, in a brief way, the main characteristics of some iterative methods. At this stage of the
work the iterative methods that have already been implemented are the Jacobi, the Gauss-Seidel and the SOR methods.
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2.1. Basic iterative methods

A basic iterative method has the form:

2,... ,1 ,0     ,     , 111 =+=−= +++ ldxxrCd lllll    (1)

where lr is the residual defined as bAxr ll −=  and 1+ld is a correction term at each step. The initial approximation,
0x , is sometimes arbitrarily chosen and sometimes taken to be bCx 10 −= . The matrix C is nonsingular, generally,

called a preconditioning matrix, that can be chosen in various ways for a faster rate of convergence (Axelsson , 1996).
If a matrix R, called a defect matrix, is defined as RCA −= , called a splitting of A, the Eq. (1) has the alternative

form

2,... ,1 ,0     b,1 =+=+ lRxCx ll .    (2)

2.2. Stationary iterative methods

The iterative method given by Eq. (2) can be generalized and improved by introducing parameters. The new
methods will be of first-order, or one-step iterative, when it is defined by

2,... ,1 ,0     ,     , 111 =+=−= +++ ldxxrCd llll
l

l τ    (3)

where { }lτ  is a sequence of parameters. If 2,..., 1, ,0    , == ll ττ is constant; the method is called stationary; otherwise it
will called non-stationary.

A second-order, or two-step iterative, method is defined by

2,..., ,1 ,0     ,-)1(     , 11 =−+== −+ ldxxxrCd l
l

l
l

l
l

lll βαα    (4)

where { }lα , { }lβ  are sequences of parameters with 10 =α .

2.3. The Jacobi, Gauss-Seidel and SOR methods

In some cases, a matrix A can be partitioned into the following block matrix form
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where iD  are square nonsingular matrices. Detailed considerations about the characteristics those matrices can be
found in Chapter 6 of Axelsson (1996).

When AA BDA −= , with )  ...,  ,  ,( 21 nA DDDdiagD = , the following iterative method, called the (block) Jacobi
method or simultaneous iteration method, is convergent:

2,..., ,1 ,0     b,1 =+=+ lxBxD l
A

l
A    (6)

an alternative form for Jacobi method is:
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In he above equations AAA BDADIB 11 −− =−=  is called the Jacobi matrix.
Now, consider the splitting of A as: ULDA −−= , where ADD =  and L, U are the lower and upper block

triangular parts of A, respectively. The following iterative method, called the (block) Gauss-Seidel method or successive
iteration method, is convergent



2,... ,1 ,0     b,)( 1 =+=− + lUxxLD ll .    (8)

In a more suitable form to computational implementation, Eq. (8) can be rewritten as
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The Equation (8) can be generalized as

2,...,  l     b,xUDxLD ll ,1,0])1[()( 1 =++−=− + ωωωω  (10)

or

2,...,  l     b,xUDxLD ll ,1,0])11[()( 1 =++−=− +
ωω

 (11)

where )2,0(∈ω  is called the relaxation parameter. The method is known as the successive relaxation method. This
method when 21 <<ω  is called over-relaxation, and the method of Eq. (10) is then called successive over-relaxation
(SOR) method, (Axelsson, 1996). For 10 << ω , the method may be called under-relaxation, but many authors call the
method as SOR method for the whole open interval (0,2). For 1=ω  the SOR reduces to the Gauss-Seidel method.

Equation (11) can written in the following alternative form

2,...  l     b),AxxxLD lll ,1,0())(( 1 =−−=−− +
ω

 (12)

The comparison of Eq. (12) with Eq. (2) shows that LDC −= ω/ and UDR +−= )1/1( ω . The iteration matrix of
Eq. (10) is defined as

])1[()( 1 UDLDL ωωωω +−−= − .  (13)

2.4. The Conjugate Gradient Method

Just for the completeness of the work we also present the formulation of Conjugate Gradient Method. The
conjugate gradient methods can be seen as iterative solution methods to solve linear systems of equations bAx =  by
minimizing a quadratic functional, such as ( ) ( )bAxbAxxf T −−=)(  over certain vector spaces called Krylov spaces,
(Axelsson, 1996). A more standard form of conjugate gradient method, when A is positive definite, is a minimization of
the functional

><= − rArxf 1,
2
1)(  (14)

where bAxr −=  and >< ,  is an inner product.
There are other variants of the conjugate gradient method depending on the characteristics of matrices involved in

the linear system, see Axelsson, (1996). This part of the research is currently being done.

3. Mathematical Model of Convective-Diffusive Problems

Generally, in a convective-diffusive problem the variable of interest can be defined by a partial differential
equation, the transport equation, in the form:
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where φ  is a scalar variable, ju  is the velocity component in direction jx , φΓ  is a diffusion coefficient and φS  is a
source/sink term.



In Table (1) is shown variables φ , coefficient of diffusion φΓ  and source term φS , for continuity, momentum and
energy equations that govern a convective-diffusive heat transfer problem.

The numerical methods, generally, used to solve Eq. (15) are finite volumes, finite differences and finite elements
methods. Whichever, the method employed to the solution, an algebraic system of equations will be obtained after the
time and spatial discretization of Eq. (15). That system when written in a matrix form will be

SA =Φ  (16)

Table 1. Variables, coefficients and source/sink terms in Eq. (15) for a convective-diffusive heat transfer problem.

Equation φ Γφ Sφ
Continuity ρ 0 0
Momentum ui - velocity in axis xi Kinematic viscosity Pressure gradient in axis xi
Energy T - temperature Thermal diffusivity Source/sink of energy

In Eq. (16), A is a coefficient matrix that depends on jU , φΓ , the time step and size of elements in spatial

discretization. Generally, the matrix A has very high sparsity (defined as the ratio of quantity of zero coefficients by 2n ;
where n is the dimension of A) of more than 99 percent for 1000>n . The vector of unknowns at spatial nodes is Φ
and S is a vector of independent terms ( known a priori).

4. Compressed Row Storage Data Structure

When the coefficient matrix A is sparse, large-scale linear systems of the form bAx =  can be most efficiently
solved if the zero elements of A are not stored, Barret et al. (1994). Sparse storage schemes allocate contiguous storage
in computer random access memory for the nonzero elements of the matrix, and perhaps a small number of zeros. Of
course, some scheme for knowing where the elements fit into the full matrix is necessary.

There are many of such methods for storing the data. Some of them are Compressed Row and Column Storage,
Block Compressed Row Storage, Diagonal Storage, Jagged Diagonal Storage and Skyline Storage. In this work we have
implemented the Compressed Row Storage (CRS).

The Compressed Row and Column Storage formats are the most general, because they make absolutely no
assumptions about the sparsity structure of the matrix, and they don’t store any unnecessary zero elements. Maybe their
main drawback is the needing of an indirect addressing step for every single scalar operation in a matrix-vector product
or pre-conditioner solve.

The Compressed Row Storage (CRS) format puts the subsequent nonzero elements of the matrix rows into
contiguous memory locations. For example, for a non-symmetric sparse matrix A, we create these vectors: one for
floating-point numbers, and the other two for integers. If we call val the vector for real values, this vector stores the
nonzero elements of the matrix A, as they are traversed in a row-wise fashion. If we name col_ind and row_ptr  the
other two vectors for integers, in col_ind vector are stored the columns indexes of the elements in val. That is, if
val(k) = ai,j then col_ind(k) = j. The row_ptr vector stores the number of nonzero coefficients in each row of matrix A.
The first element in row_ptr may be any integer number, in this case, it was defined as unity. For example, the location
“i” in row_ptr stores the quantity of all nonzero coefficients that have already been counted in all previous rows, plus
one of the first location. Since the matrix A has n rows, the dimension of row_ptr will be n+1. As a consequence of that
definition row_ptr(n+1) = nnz+1, where nnz is the number of nonzero coefficients in the matrix A. The storage savings
for this approach is very significant. Instead of storing n2 elements, we need only to store nnz floating point elements
and nnz+n+1 integer elements.

We illustrate below as the CRS is implemented for a non-symmetric small matrix A defined by
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   7    8   0    3 
  0    8   7    0 
   0    0   9    3 
2-   0   0   10

A  (17)

The CRS format for this matrix is then specified by the arrays {val, col_ind, row_ptr} given as follows, in Table 2:

Table 2. Vectors defined in a CRS data structure for the matrix A

val 10 -2 3 9 7 8 3 8 7
col_ind 1 4 1 2 2 3 1 3 4
row_ptr 1 3 5 7 10



5. Test Problems and Results

As mentioned at Introduction, the main purpose of this work is to implement iterative solution algorithms for large
sparse systems, with storage of only nonzero elements in matrix A. Until this stage of the work the iterative methods
implemented have been the stationary ones: Jacobi, Gauss-Seidel and SOR. The technique of storage of nonzero
elements of matrix A is the RCS (row compressed storage). The tests were performed considering matrices that,
generally, appear in finite difference and finite element discretizations of convective-diffusive problems in
two-dimensional domains. These matrices present a penta-diagonal structure. It is quite straightforward to solve also
linear systems presenting hepta-diagonal-like matrices that appear frequently in three-dimensional problems. In all
simulations the vector of starting was taken as: 00 =x .

The convergence criteria is based on the following conditions: ||)||||||||(|||||| bxAr k
rk +≤ ε  or |||||||| br rk ε≤

or rkr ε≤|||| . The norm ||||  is defined in Appendix A, r is the residual and rε  is a given parameter, small enough to

be represented by the tiny computer word. We can say that a sequence }:1,{ ∞=kxk  converges to x if the

0||||lim =−∞→ xxk
x . The stopping criteria may be one of the following: the norm of residual satisfies the

convergence criteria; or there is no evolution of the sequence xk, expressed in mathematical form as

x
kk xx ε<−+ |||| 1 ; or the number of iterations exceed a maximum number specified. The parameter xε  has the nature

of rε  and is used computationally to control the evolution of the series }:1,{ ∞=kxk .

5.1. Test using the Gauss-Seidel method with CRS data structure

The Gauss-Seidel method has been implemented with compressed row storage data structure. For purpose of test, it
was taken an arbitrary penta-diagonal matrix that has a structure similar to matrices originated in application of finite
difference or finite element methods. The matrix A and vector b have the following forms:
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Figure (1) shows the number of iterations to reach the stopping criteria as a function of the matrix order and using
variables of four bytes (single precision) and eight bytes (double precision) respectively. In computation of actual
problems, we recommend the use of double precision variables, because the calculation using single precision variables
generally presents low accuracy due to round-off errors. The upper curves correspond to variables of double precision
and the lower curves correspond to single precision variables. The oscillation on the number of iterations with the
increasing of matrix order may be due that the problems are actually different when the order of the systems are
changed. In spite of the coefficient matrices be of equal structures, the problems are different for different orders, n, of
the matrices. The Figure (1) also shows that the SOR method with optimal relaxation factor converges faster than the
Gauss-Seidel method. All computations were performed using the parameters rε  and xε  settled to rε  = xε  = 10-7

when using variables of 4 bytes and rε  = xε  = 10-15 when using variables of 8 bytes.
Figures (2) and (3) show the variation of residual norm with the order of matrix for variables of 4 bytes and 8 bytes,

respectively. The residual norm used to obtain the results presented is the L2 norm as defined in the Appendix A. For
variables of 8 bytes, the calculated residual norm in SOR method presented low values than the calculated residual
norm in the Gauss-Seidel method to the most range of the matrix order.

In Figure (4) is presented the number of nonzero (nnz) elements with the increasing of matrices order or the
required number of locations to storage the real values of vector val. In Figure (4) is also showed the number of
locations required to store the supposed full matrix. We can see that the total capacity of storage required drops deeply
using the compressed row data structure. We start the calculation with matrices of order n = 1000, and even, in this case
the sparsity is greater than 99%. The sparsity was defined as (1-nnz/n2). To take in account the sparsity of matrices it
was used the compressed row storage. The compressed row storage, as mentioned above, decreases drastically the
memory used during the calculation, and also the computing time. An inspection showed that, while, the solution with
CRS data structures used about 2 Mb for the solution, the calculation with full matrices used until 700 Mb, for a matrix
of order n = 20000. Also for measure of the time of computation was solved a system of dimension such as 200000 by
200000. Using a personal computer, Pentium III with RAM of 768 Mb, it takes about 3 and half hours of elapsed time
to solve a such system.
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Figure 1. Number of iterations as functions of matrix order for different methods and computer word length.
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5.2. Test using the SOR method with CRS data structure

The Gauss-Seidel method, Eq. (8), is a particular case of relaxation methods, Eq. (10), when 1=ω . Table (3)
shows a comparison of results for both Gauss-Seidel method and SOR method with 1=ω . As expected the results are
equals. The relaxation factor has the function to force the residual goes to zero faster than in Gauss-Seidel method. But
if ω value is badly chosen the SOR can be worse than Gauss-Seidel. This fact puts the necessity for an automatic



process to setup the ω value, optimally. According with Barret et al. (1994) the factor of relaxation must be in the open
interval (0,2). Figure (5) shows the number of iterations as a function of the relaxation factor. Those curves suggest,
clearly, an optimal value for ω. The system solved in the case showed in Fig. (5) had dimension original of 30000 by
30000; with the using of the CRS data structure only about 9x104 floating points values (the nonzero coefficients) need
to be stored, while for the full matrix would be necessary store 9x108 real values. In this case the sparsity of the matrix
is something like 99.999999 per cent. Less than 0.1% of real data and more than 99.9% of zeroes were stored if the full
matrix data structure was used. The dimension of the vectors val and col_ind would be 9x104 locations each one for
floating points and integers respectively, while the vector row_ptr would have 30001 integer locations. In memory size,
the full matrix would require about 6.9 Gbytes for storing the double precision data. With the CRS data structure we
need about 0.69 Mb for double precision data in vector val plus 0.46 Mb for long integer data in vectors col_ind and
row_ptr.
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Table 3. Results for Gauss-Seidel method and SOR method with ω =1

Matrix order, n =30000
Gauss-Seidel Method SOR Method (ω =1)

Iterations for single precision 12 12
Norm of residual (4 bytes) 3.780947E-07 3.780947E-07
Norm of increment (4 bytes) 9.501666E-08 9.501666E-08
Iterations for double precision 26 26
Norm of residual (8 bytes) 2.969775432495640E-015 2.969775432495640E-015
Norm of increment (8 bytes) 7.271132236455295E-016 7.271132236455295E-016
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Appendix A

In the following we present some definitions and properties of vector and matrix norms.

A.1 Definition of a vector norm

Let x ∈ ℜn and y ∈ ℜn. A vector norm in ℜn space is a function f: ℜn → ℜ satisfying the following properties:

 f(x) = 0   if   x = 0,    (19)

 f(x) ≥ 0,  (20)

 f(x+y) ≤ f(x) + f(y) ,    (21)

 f(αx) = |α|f(x),  α ∈ ℜ.  (22)

This function f(x) is denoted by f(x) = ||x||.
A class of useful norms are the p-norms, defined as
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The most popular of the norms defined above are the cases p = 1, 2, ∝, as follow
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A.2 Definition of a matrix norm

Let A ∈ ℜm×n and B ∈ ℜm×n. Once the vectorial space ℜm×n is isomorphic with the vectorial space ℜmn, the
definition of a matrix norm must be equivalent to the definition of a vector norm. In particular, if f: ℜm×n → ℜ is a norm
of a matrix, the following properties are satisfied:

 f(A) = 0   if   A = 0,      (27)

 f(A) ≥ 0,    (28)

 f(A+B) ≤ f(A) + f(B) ,    (29)

 f(αA) = |α|f(A),    α ∈ ℜ.  (30)

Adopting the same notation, the norm of a matrix can be defined as ||A|| = f(A). The most used norms of a matrix in
linear algebra are the Frobenius norm
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and a class of p-norms



p

p
p ||||

||||
sup

x
Ax

A
0x≠

=  (32)

In above equation, the term ||x||p  is a scalar so we can write
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Clearly, the term (x/||x||p) is unity vector, then the p-norms can be also defined as
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The norms f1, f2 e f3 in ℜm×q, ℜm×n, ℜn×q are called mutually consistent, if for all A ∈ ℜm×n, B ∈ ℜn×q one has
f1(AB) ≤ f2(A) f3(B). Notice that neither all matrices satisfy the product property

BAAB ≤  (35)

Some properties of the p-norms (specially for p = 1, 2, ∝) satisfy equalities and inequalities. If A ∈ ℜm×n, then
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