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Abstract. The publication of the paper of Curzon and Ahlborn in 1975 on the thermal efficiency of an endothermic Carnot engine set
a revolution on the evaluation methodology of the thermal efficiency of thermal engines and created the roots for an inovation on
the second law analysis of thermodynamic processes. This new analytical procedure, the Finite Time Exergy Analysis, emerged as a
major break through in Thermodynamics.
The present work is based on the adaptation of the Curzon-Ahlborn efficiency to the evaluation of combined cycles. Combined
cycles in series, with and without intermediate heat losses, will be analysed from a theoretical point of view. Obtained results and
conclusions following this new approach, will be compared with classical evaluation methods.
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1. Introduction

The conciliation of the optimum thermal efficiency working conditions with the natural limitations imposed by the
reversible heat transfer constraints that are one of the main basis of the Carnot cycle concept lead to the development by
Novikov (Bejan, 1994) and lately by Curzon and Ahlborn (1975) of the simple and effective concept of the internally
reversible and externally irreversible “Carnot” engine, known afterwards as the endoreversible Carnot engine. Based on
this simple idea a new methodology for thermodynamic analysis was developed, initially turning its attention to thermal
engines (Leff, 1987; Bejan, 1994; Bejan, 1996). For example, Bejan (1996) analyses models for power plants that
generate minimum entropy while operating at maximum power output. This endorreversible engine analysis was further
enhanced by the development of new techniques for the evaluation of thermodynamic processes, the endoreversible
thermodynamics (Hoffman, et al., 1997), as a non-equilibrium approach in viewing a thermodynamic system as a
network of endoreversible systems, exchanging energy in an irreversible fashion. This concept was widened by
Sieniutycz and co-workers studies (Sieniutycz, 1998; Sieniutycz and Von Spakovsky, 1998; Sieniutycz 1999;
Sieniutycz, 2001; Sieniutycz and Kubiak, 2002). More recent studies covered refrigeration cycles, Agnew et al. (2002),
as well as heat pump cycles, Kaushik et. al (2002). Another result of the development of the new concepts around
endoreversible thermodynamics was either the refinement of new thermodynamic diagrams already proposed by several
authors, or even the elaboration of new approaches (Bucher, 1986; Yan and Chen, 1990; Yan and Chen, 1992; Bucher,
1993; Wallinford, 1999; Branco et al, 2002 and Branco et al., 2002a), just to refer a few ones.

2. Series combined cycle without intermediate heat losses

Considering the series combined cycle where all the rejected heat from the top or high temperature cycle (H) is
used by the bottom or low temperature cycle (L) (Horlock, 1992) it would be convenient to find out what is the overall
thermal efficiency of the combined cycle when each component cycle is operating at maximum work output conditions.

Both engines of Fig. (1) are endorreversible and the main objective is to find out what is the combined cycle
thermal efficiency corresponding to a work maximization situation for each one of them.

According to the scheme, the top cycle receives a heat amount of HQ  from the hight temperature heat reservoir,

produces an amount of work HW  and rejects the heat RQ  towards the bottom cycle. As far as this second cycle is

concerned, while receiving this last amount of heat, it produces an amount of work LW  rejecting heat LQ  to the

external low temperature heat reservoir. As the main objective of this cycle is to maximize the work production,
according to the Curzon-Ahlborn analysis as well as basic common sense, finite temperature differences must occur
during the heat exchanges among engines and heat reservoirs, as well as between the two engines. For the heat
exchange with the high temperature reservoir there is a finite temperature difference ( )H HCT T− , for the heat exchange

between both cycles, the upper cycle is at RHT  whereas the bottom cycle is at ELT . However, from the theoretical point
of view a hipothetical heat reservoir, at temperature intT , is assumed to exist between these two cycles. For the final
heat rejection from the bottom cycle towards the external low temperature reservoir there is a temperature diference of

( )LC LT T− . On Fig. (1) there is also a T-s diagram with the relative positions of all the involved heat reservoirs.
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Figure 1. Curzon-Ahlborn combined cycles.

Applying the first law of thermodynamics to the top and bottom cycles as well as the definitions of the
corresponding thermal efficiencies,
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the deduction of the global thermal efficiency for the series combined cycle gives (Horlock, 1992),

CC H L H Lη η η η η= + − (3)

As previously referred the objective of the present analysis is to study the possibility of maximizing the output work
from each one of the two cycles composing the combined cycle. The original analysis for an single endothermic Carnot
cycle working between two heat reservoirs (at HT  and LT  respectively), was carried out by Curzon and Ahlborn (1975),

who showed that the cycle thermal efficiency for a work output maximization situation is given by 1 L
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In the adopted symbology when an asterisk is used it means that the energies are for the situation of maximization
of the work output. So for the top cycle at the work maximization conditions,
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Defining now the combined cycle efficiency at maximum work output as,
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the conclusion is that,
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which is an expression equal to that corresponding to the conventional thermal efficiency for the series combined cycle.
Replacing now the Curzon-Ahlborn efficiencies for both the component cycles in the above expression,
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the final result after a proper simplification is,
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The Curzon-Ahlborn efficiency for the series combined cycle will be then independent of the reference
intermediate temperature for the heat exchange between both engines. This result makes sense as the Carnot efficiency
for the case of series combined Carnot cycles would be,
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There is only a dependence upon the high and low heat source temperatures between which the series combined
cycle is working. Once again, similarly to the Carnot cycle thermal efficiency, the Curzon-Ahlborn is also a reference or
standard against which all series combined cycle efficiencies may be compared. There is however an efficiency
reduction when moving from the combination of the series Carnot combined cycle towards the maximization of the
work output,

, ,
L L

CC C CC C A CC
H H

T T

T T
η η η −= − = −∆ (13)

and introducing the definition of the temperature ratio L

H

T
Tτ = , Leff (1987),

CCη τ τ= −∆ (14)

This efficiency reduction is shown by the upper line in Fig. (3), as a function of the heat sources temperature ratio.
It is clearly that the work maximization for a series combined cycle leads also to a thermal efficiency decrease
compared to the ideal Carnot situation.

Through the calculation of 0CCSη
τ

∆∂ =
∂

 it is found that when 0.25τ =  the thermal efficiency penalization is

maximized and reaches the value of 25 %, as it is evident from the analysis of same curve on Fig. (3).

3. Series combined cycles with intermediate heat losses

A closer situation to the daily practice is when there are heat losses during the heat exchange between the two
cycles in series. Such situation will penalize the overall cycle behaviour. Schematically, Fig. (2) is quite clear.

Again and according to the definition of thermal efficiency for the combined cycle,
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while for each of the component cycles,
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Through the application of the first law of thermodynamics to the top cycle, and to the heat transfer between both
cycles, and defining the parameter,
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the deduction of the thermal efficiency for the series combined cycle with intermediate heat losses gives (Horlock,
1992),

UNCCSL H L H L Lη η η η η ην= + − − (18)

This expression can be compared with the corresponding equation for the thermal efficiency of the series combined
cycle without losses during the intermediate heat exchange, and it is immediately realized that the efficiency penalty of
intermediate heat losses upon the combined cycle overall thermal efficiency is the last term on the left hand side of Eq.
(18) UN Lην . In other words, when there are not heat losses, 0UNν =  and Eq. (18) →  Eq. (3).

It would again be convenient to find out the thermal efficiency of the combined cycle for a output work
maximization and taking into account this intermediate heat loss, Fig. (2). Remembering that for maximum output work
the asterisk superscript is used in all involved energy forms.

For the top cycle it can be written that,
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and for the bottom cycle,
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where,
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which is an expression quite similar to the previous one for the general situation.
Replacing ,C A Hη −  and ,C A Lη −  by their definitions
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and considering the Curzon-Ahlborn efficiency for the series combined cycle without intermediate heat losses
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Figure 2. Series combined cycle with intermediate heat losses. Maximization of work output.

In this case it is clear that there is a global thermal efficiency penalization dependent upon the heat losss ratio UNν ,

the intermediate temperature intT  and the temperature of the cold reservoir LT  and that there is not a simple overall
thermal Curzon-Ahlborn efficiency equation as found in the previously analysed situation.

Considering now the possibility of using a series combined cycle with intermediate heat losses but using Carnot
cycles,
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and evaluating the thermal efficiency reduction when going from a combination of Carnot cycles towards the
combination of Curzon-Ahlborn cycles,

( )int intUNCCSLη τ τ ν τ τ= − + −∆ (30)

where besides the previously defined temperature ratio τ  a second temperature ratio intτ  is used,
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Figure 3. Reduction of the series combined cycle thermal efficiency for the maximization of work output. Symbol 
refers to Eq. (14), Other symbols refer to Eq. (30): □ is for int 0.6τ = , × for int 0.1τ =  and � for int 0.25τ = .

Looking for the maximization of the thermal efficency degradation through the calculation of 0CCSLη
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On Fig. (3) besides the plot of Eq. (14) , Eq. (30) is also shown but for three different values of the temperature
ratio intτ . For all situations the maximization of efficiency degradation happens for 0.25τ = . The worst case takes
place, as said before, when int 0.25τ τ= = .

4. Conclusions

Through a simple approach it was shown how the Curzon-Ahlborn efficiency concept can be applied to combined
cycles and what is the thermal efficiency penalization that is obtained when the maximization of the combined cycle
work output is looked for in detriment of the theoretical combination of Carnot cycles.
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