
 

 

 
SENSING EFFECTIVESS OF PIEZOELECTRIC PATCHES WITH FINITE 
STIFFNESS BONDING 
 
Alfredo R. de Faria 
Instituto Tecnológico de Aeronáutica, Dept. Engenharia Mecânica, CTA-ITA-IEM, São José dos Campos, SP 12228-901 
e-mail: arfaria@mec.ita.br 
 
Abstract. The impact of the quality of the bonding layer on the sensing capability of plane piezoelectric patches is assessed. The 
bonding layer between piezoelectric material and main structure is assumed to be elastic, having a finite stiffness and considerable 
thickness when compared to the thickness of the piezoelectric sensor. The equations governing the mechanical equilibrium are 
simplified by assuming a pure shear stress state in the bonding film. Starting with the strong form of the variational principle 
involved (equilibrium equations), the associated functional is obtained and, subsequently, the finite element method is employed to 
solve the governing equations in two dimensions. The displacements found are those occurring on the contact surface between 
bonding film and piezoelectric sensor. The numerical solution obtained in terms of displacements allows for the calculation of the 
effective voltage observed by the piezoelectric sensor. The results obtained by the finite element model developed are compared 
against those obtained by commercial codes for the particular case of zero voltage enforced. 
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1. Introduction 
 

Piezoelectric patches are now commonly used as actuators or sensors in many areas such as noise suppression, 
robotics, shape control and mechatronics (Tzou, 1991; Batra et all., 1996; Barrett, 1994). Accurate models for 
prediction of piezoelectric effects on structural responses have been and are still under development with increasingly 
complexity and refinement (Liao et all., 1991; Crawley et all., 1990). 

Despite recent advancements, a number of non-idealities can be pointed out in real applications that are seldom 
taken into account in numerical models (de Faria et all., 1996; Crawley et all., 1987). The non-linearity of the 
constitutive equations is often disregarded although formulations that incorporate nonlinear strain-displacement 
relations are reasonably well documented (Meressi et all., 1993; Ha et all., Chang, 1992). Creep or strain rate effects 
may be significant and sometimes beneficial (active or passive damping applications (Trindade et all., 2000, Trindade et 
all., 2001) but are usually neglected. Other non-idealities may be listed such as depoling of piezoelectric material, 
electromechanical hysteresis, etc. 

There are basically two types of strategies adopted when it comes to integrating the piezoelectric patches or layers 
to the main structure: bonding or embedding sensors/actuators. In both cases the interface between main structure and 
piezoelectric material play a decisive role in terms of strain/stress transfer mechanisms. A good interface ensures that 
effective actuation or sensing is achieved, avoiding the necessity of excessive voltages to be applied in the case of 
actuators and inaccurate output results in the case of sensors, thereby increasing robustness of control systems. 

Investigations that consider the finite stiffness character of the interface or its thickness can be carried out without 
introducing the complications of some of the non-idealities cited earlier. Within the context of linear analyses it is 
possible to quantitatively assess the quality of the interface. The problem to be solved is essentially three-dimensional 
but it may be simplified to a two-dimensional one if no delamination or debonding is assumed. In this situation the 
assumption of a simplifying stress state in the interface can be adopted without serious loss of accuracy. 

This work addresses the assessment of the quality of the bonding layer of piezoelectric sensors that are mounted on 
external surfaces of the main structure. Both external surface and piezoelectric patches are assumed to be perfectly 
plane and parallel, having a layer of adhesive joining them together. The assumption of a pure shear stress state 
occurring over the bonding layer is adopted such that the differential equilibrium equations can be simplified, i.e., the 
out-of-plane shear stresses are proportional to the in-plane displacements. 

A full three-dimensional model is used to compare against the results obtained by the present two-dimensional 
model. In these comparisons the piezoelectric material is assumed to be under no voltage such that the electro-
mechanical coupling is cancelled out. This allows for the use of traditional elements implemented in commercial finite 
element packages to be used despite the fact that, fundamentally, the problem involves both mechanical and electrical 
degrees of freedom. 
 
2. Problem Formulation 
 

The basic geometry involved in the formulation is illustrated in Fig. (1). The piezoelectric patch shown has a 
quadrilateral arbitrary shape but it is assumed to have a constant thickness hp. The bonding layer (the shaded area) is 
also assumed to have a constant thickness hb. It must be clear that both thicknesses are exaggerated in order to facilitate 
visualization. The dashed lines in Fig. (1) are parallel to the coordinate system xyz; these are drawn to represent the 
surface on which the piezoelectric patch is mounted. The displacements u and v indicated in Fig. (1) are those measured 
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along the x and y axes, respectively, occurring on the surface between bonding and piezoelectric materials. The 
displacements u  and v  have orientations similar to u and v but occur on the surface between bonding layer and main 
structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Basic geometry of piezoelectric patch 
 

The assumption concerning the bonding layer is that it is in a state of pure shear such that stresses τxz and τyz are 
nonzero and independent of z. Admitting that the out-of-plane shear stresses vary linearly with z in the piezoelectric 
material the linear equations governing the equilibrium within the domain of the piezoelectric material may be 
expressed as 
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where Dz is the electrical displacement in the z direction. Eqs. (1a-b) are mechanical equilibrium equations in the x and 
y directions respectively. Equation (1c) is the electrical equilibrium derived from Maxwell’s equations. Notice that the 
constitutive equations have not been introduced yet but the electro-mechanical coupling leads to the occurrence of 
electrical variables in Eqs. (1a-b) and mechanical variables in Eq. (1c). 

The shear stresses τxz and τyz can be computed from the assumption of a state of pure shear in the bonding layer as 
below: 
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where Gb is the shear modulus of the bonding material. The variational principle associated with the equilibrium 
equations can now be stated as in Eq. (3). 
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where the shorthand notation ∂()/∂x=(),x has been used, φ is the electric potential and Ω is the surface in between 
bonding layer and piezoelectric patch. Using Green’s theorem in Eq. (3) yields 
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where Ω  is the boundary of Ω, n = (nx, ny) is the unit normal vector on Ω  and Ez=-φ,z is the electric field along z. 
It is now necessary to call upon the constitutive equations of the piezoelectric material. In this particular situation 

the constitutive equations can be used in two dimensions such that it is written as in Eq. (5) 
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where Ep and νp are, respectively, the modulus of elasticity and Poisson ratio of the piezoelectric material, e31 and e32 
are piezoelectric constants that can be obtained from the coupling matrix [d] (Allik, Hughes, 1970) and ζzz is the 
reduced dielectric constant. εxx, εyy, γxy are the usual linear mechanical deformations and Ez is the electric field along the 
z direction. 

Substitution of Eq. (5) into (4) and dropping the boundary condition terms leads to the variational principle given in 
Eq. (6). 
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where Ez=V/hp. The scaled functional Π* is obtained dividing Eq. (6) by )1/( 2
ppphE ν−− . 
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where AΩ is the area of the domain Ω and Γ is defined in Eq. (8). 
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It is clear from Eq. (8) that Γ is non-dimensional. Moreover, from the derivation of Eq. (7), it is understood that Γ 

reflects the contribution of the bonding layer finite stiffness to the problem functional Π*. The higher Γ, the more the 
solution of the minimization of Π* tends to uu = , vv = . Parameter Γ provides, therefore, a measure of the quality of 
the bonding layer. 
 
3. The Finite Element Method 
 

The functional presented in Eq. (7) must be minimized in order to obtain the solutions u and v. This is done 
numerically through the finite element technique. First derivatives of both u and v with respect to x and y are present 
suggesting that C0 elements are used. Hence, the domain Ω is discretized into bilinear elements of four nodes with the 
aid of the interpolation functions defined in Eq. (9). 
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where ue and ve are the nodal displacements u and v of element e. By inspection of Eq. (7) it is readily observed that the 
displacements u , v  must be available. This is the case when the piezoelectric patch is used for sensing purposes 
because u , v  are nothing but the displacements in the x and y direction at the surface of the main structure. Assuming 

a constant voltage V over the piezoelectric patch leads to the discretized functional *
FEMΠ  expressed in Eq. (10) where 

n is the total number of bilinear elements. 
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Assembly of the element matrices into global arrays allows one to write the system of equations that will give the 
solutions u and v. In a compact form these may be expressed as 
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where q is the global vector of displacements. Matrix Kqq, relates to the first and second integrals in Eq. (10), matrix 

'
qqK  relates to the third integral in Eq. (10), vector F relates to the fourth integral in Eq. (10) and matrix KqV relates to 

the fifth integral in Eq. (10). Notice that both KVV and V are scalar quantities, and KqV is a column matrix. Once q is 
determined from the solution of Eq. (11) the voltage read by the piezoelectric sensor is easily found making V=-qTKqV / 
KVV. 
 
 



 

0.0 1.0 2.0 3.0 4.0 5.0
x (cm)

0.0

0.5

1.0

1.5

2.0

2.5

y
(c

m
)

4. Model Validation 
 

The two-dimensional finite element model developed in the preceding section is compared against a three-
dimensional finite element model implemented in the commercial code Nastran. Since electrical degrees of freedom are 
not formulated in Nastran one must be able to avoid its effects on the response of piezoelectric materials in order to 
provide a fair comparison with the finite element model implemented in this work. This is done by enforcing V=0 V in 
Eq. (11). In this manner the contribution of the electro-mechanical coupling matrix KqV is artificially cancelled out. 

An important point that arises in modelling such thin films is that of element aspect ratio. In practical applications 
the thicknesses of both bonding and piezoelectric layers are very small when compared to the other dimensions of the 
layered structure in the xy plane. Thus, a large number of elements must be used along those directions when compared 
to the number of elements in the z direction. Moreover, due to the St. Venant principle, large strain gradients are 
expected to occur in the regions near the patch edges as opposed to small gradients in the central portion. Hence, mesh 
refinement is desired near the edges.  

The material properties used in this work are given in Tab. (1). The validation of the code assumes that the bonding 
layer thickness is hb=200 µm and that the piezoelectric layer has thickness hp= 200 µm. This bonding layer thickness is 
too large for practical values but is used only for validation. A rectangular piezoelectric patch will be considered that 
has 5 cm side in the x direction and 2.5 cm side in the y direction. For this configuration Γ=24.0. 

 
Table 1. Material properties 
 

property piezoelectric bonding 
Modulus of elasticity (GPa) 63.0 3.834 

Poisson ratio 0.30 0.50 
Shear modulus (GPa) 24.23 1.278 

Piezoelectric constant e31 (N/Vm) 22.86 - 
Piezoelectric constant e32 (N/Vm) 22.86 - 
Reduced dielectric, ζzz (nC/Vm) 3.39 - 

 
Three meshes were used in the calculations. Figure (2) shows a top view of the mesh used in the simulations for the 

present finite element model discussed in the previous section; it is refined near the edges and has 120 2D elements in 
the x direction unevenly spaced and 60 2D elements in the y direction also unevenly spaced. Two Nastran meshes were 
used, both having 120 solid elements in the x direction evenly spaced and 60 solid elements in the y direction evenly 
spaced. However, one out of those two meshes uses 1 solid element to represent bonding and 1 to represent 
piezoelectric layer in the z direction while the other uses 2 solid element to represent bonding and 2 to represent 
piezoelectric layer in the z direction. Thus, the Nastran meshes have 14,400 or 28,800 solid elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Finite element mesh used in the present model 

 
Two simulations are conducted that reflect the strain distributions on the external surface of the main structure: (i) 

uniform normal strain in the x and y directions of εxx=50 µε and εyy=40 µε and (ii) pure shear in the xy plane of 30 µγ. In 
the present finite element model as well as in Nastran’s prescribed displacements u , v  are enforced that represent 
these strain states. 

Figures (3a-d) show the strain distributions obtained along the patch center lines. Normal strains are shown in Figs. 
(3a) and (3b) and shear strains are shown in Figs. (3c) and (3d). It can be noticed that results for the finer Nastran mesh 
and the 2D mesh used in the present formulation (Fig. (2)) produce the same results whereas the coarser Nastran mesh 
displays distortions due to poor refinement along z. 



  

 

 
 
Figure 3. Strain distribution for validation 
 

The more interesting comparison is that of total number of degrees of freedom. Accounting for just translation 
displacements in the finer Nastran mesh a total of 110,715 degrees of freedom are involved. In the present model 
14,762 degrees of freedom are necessary, i.e., only 13.4% of Nastran’s. The enforcement of V=0 V allowed one to use 
Nastran elements in this particular validation model. However, if V is free to vary the full matrix Eq. (10) must be 
solved what required knowledge of coupling matrix KqV and the electric matrix KVV. 
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5. Numerical Simulations and Discussion 
 

The objective of the numerical simulations conducted is to assess the impact of the quality of the bonding layer on 
the effectiveness of piezoelectric sensors. It was shown that parameter Γ defined in Eq. (8) provides an adequate means 
of measuring the quality of the bonding film. Moreover, it is important to compare the actual voltage read by the 
piezoelectric sensors against the ideal voltage that would be observed when Γ increases without bounds (Γ → ∞). 

In the first simulation the same configuration and mesh used in the validation is adopted except that the thickness of 
the bonding layer is varied in order to represent different bonding stiffness. hb is considered to be in between 1 µm 
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(Γ=339.7) and 500 µm (Γ=15.2). Normal strains of εxx=50 µε and εyy=40 µε are imposed. If a perfect bond is assumed 
than the voltage observed under this strain state is V∞=121.5 V. 

The normalized voltage with respect to V∞ is shown in Fig. (4) for different values of Γ. For Γ>120 the 
effectiveness is more than 98%. This range of Γ corresponds to bonding film thicknesses not larger than 8 µm only 
which is very small for practical applications. A more realistic thickness of 100 µm gives Γ=33.9 and an effectiveness 
of 92%. 

 
Figure 4. Effectiveness variation for rectangular piezoelectric sensors 
 

The constitutive law given by equation (5) does not assume that the shear strain γxy contributes to the electric 
displacement Dz. The practical effect of this is that shear strains do not produce voltage in the piezoelectric sensor. 
Therefore, shear strains cannot be directly measured with a sensor patch made of that kind of piezoelectric material. The 
solution to circumvent this difficulty is to use more than one sensor to configure a network of sensors. 

In a second simulation the shape of the piezoelectric patch is modified and its impact on the sensor effectiveness is 
assessed. The basic shape considered is that of a parallelogram whose sides are 5 cm and 2.5 cm long with an arbitrary 
angle α of inclination between them. Thicknesses are fixed at hp=200 µm and hb=100 µm. The displacement field 
imposed u , v  is representative of uniform normal strains εxx=50 µε and εyy=40 µε. The mesh used is similar to that of 
Fig. (2) but the element sides are aligned with the parallelogram sides. The expression for Γ given in Eq. (8) this case 
can be slightly modified to accommodate the variable shape 
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where ΩA  is the area of the rectangular shape (in this case 12.5 cm2). 

Figure (5) presents the plotting of the voltage observed V and the voltage V∞ that would be observed in a perfect 
bonding situation. The higher the distortion of the piezoelectric patch given by α, the smaller Γ. Hence, it is noticed that 
the strains imposed lead to the highest V for distorted shapes. However, the ideal voltage V∞ is also the highest for small 
α. 
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Figure 5. Output voltage for parallelogram shaped piezoelectric sensors 
 

In order to assess the effectiveness it is important to compare the ratio V/V∞ as was done in Fig. (4) To this end Fig. 
(6) is drawn where effectiveness is plotted against Γ. Observe now that V/V∞ increases with Γ, i.e., a better sensor 
efficiency is obtained for larger Γ as expected. Simultaneous comparison of Figs. (5) and (6) shows that the best 
efficiency is obtained with high Γ but the disadvantage is that with higher Γ comes lower voltages. 

Figure 6. Effectiveness variation for parallelogram shaped piezoelectric sensors 
 

Figure (5) reveals a very interesting result: distorted shapes produce higher voltages. This may not be a feature 
sough in piezoelectric sensors but it is certainly a relevant point when piezoelectric actuators are designed. In order to 
induce the same kind of strain distribution on the main structure one must impose higher voltages in distorted shapes of 
patches. This assertion is obviously valid only with regard to the parallelogram shaped patches. It may be possible, 
through shape optimization, to find a better distribution of piezoelectric material such that the smallest V is achieved 
given weight constraints for the same induced strains. 

The mechanism behind loss of efficiency of piezoelectric sensors can be better understood if the strain distribution 
of a typical configuration is observed. The geometry used in the validation is assumed again but the bonding film 
thickness is hb=100 µm and normal strains of εxx=50 µε and εyy=40 µε are imposed in a rectangular patch. The strain 
distributions εxx, εyy and γxy are shown, respectively, in Figs. (7a), (7b) and (7c). The interesting remark is that in the 
central portion of the patch the strains are the same as those imposed. However, large gradients appear near the edges 
and the strains drop sharply. The edge effects are therefore the main reason for loss of efficiency. 
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Figure 7. Typical strain distributions 
 

The pure shear state assumed to exist within the bonding layer was shown to be an accurate approximation of the 
real strain distribution as proven by a 3D finite element model. Such assumption is useful in the analysis of 
piezoelectric patches because of the small thicknesses involved. However, as layers become thicker, the approximation 
deteriorates and alternative approaches should be used. 

Debonding is not a concern in the present model. However, transverse strains may develop in the z direction that 
lead to that kind of failure. In order to capture that behavior a more refined finite element model can be used where a 
quasi-3D approach is employed (Nabarrete, 2002). In this case the displacements are also interpolated in the z direction 
and at least two layers of nodes must be used to represent that variation. The resulting model is able to predict 
transverse strains and stresses. 
 
6. Conclusions 
 

The present investigation proposes a non-dimensional parameter (Γ) to measure efficiency of piezoelectric sensors 
mounted on plane surfaces whenever the requirement of thin bonding and sensor layers is satisfied and the condition of 
perfect parallelism between external surface and sensor is met. Even for reasonable quality bonding the output voltage 
can present discrepancies of about 10% in comparison to the theoretical voltage assuming perfect bonding (V∞). 

It was shown that the mechanism behind loss of efficiency is due to edge effects on the strain distributions. These 
may be minimized if tapered bonding layer constructions are allowed. In this way the sharp surfaces illustrated in Figs. 
7a-c would display smoother gradient variations, bringing the real output voltage closer to the theoretical one. 

A basic discussion on shape effects of the piezoelectric sensors has been given suggesting that some kind optimal 
criterion may be adopted. The proposed criterion is maximization of the efficiency V/V∞ considering constant mass. A 
possible undesirable side effect of working with arbitrarily shaped piezoelectric sensors is that non-idealities in terms of 
electric field distribution (leakage for example) may become relevant if the optimal design obtained has a highly non-
convex shape. 
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